Chapter 1

Theory of Gravitation






In this chapter a theory of gravitation in flat space-time is studied which was
considered in several articles by the author.

Let us assume a flat space-time metric. Denote by (xi) the co-ordinates of
space and time then the line-element can be written

(ds)* =7, dx'dx] (L.1)

Here,(nij) is a symmetric metric tensor. In addition to the metric tensor a

symmetric contra-variant tensor (77“) is defined by
med =81, g =6';. (1.2)
Furthermore, we put
n=det(n; ). (1.3)
In the special case of a pseudo-Euclidean metric we have
(xi)z(xl,xz,xg,ct). (1.4)

(xl,xz,x?’) are the Cartesian co-ordinates, t is the time and C is the velocity
of light. Then, the metric tensor has the form

() = diag (11.1,-1). (1.5)

This is the metric in which the most kinds of fields and matter are described.

1.1 Gravitational Potentials

Similar to Maxwell’s theory of Electrodynamics we assume that gravitation
is described by a field in space and time. The electro-magnetic field can be
described with the aid of a four-vector called the potentials of the field and
produced by an electric four-current.
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A Theory of Gravitation in Flat Space-Time

Analogously, the symmetric gravitational potentials (gij) are produced by the
total energy-momentum of matter and gravitational field. Similar to the
equations (1.2) let us define a symmetric tensor (g") by

0,99 =6, g%gy=0, (L.6)
We put
G =det(g;). (L7)
In addition to the time t we define the proper-time 7 by
¢?(dz)’ =—g;dx'dx/ . (1.8)

The relation (1.8) is similar to the definition of the line-element (1.1) with the
metric tensor (nij). Therefore, theories of gravitation described by (gij) with

the proper-time (1.8) and with the line-element (1.1) are called bi-metric
theories of gravitation.

1.2 Lagrangian

The theory of gravitation is derived from an invariant Lagrangian which is
quadratic in the first order co-variant derivatives of the potentials (g; J-) resp. of
the contra-variant tensors (g*/). The derivatives are relative to the flat space-
time metric (1.1) and they are denoted with a bar “/”. The Lagrangian has the
form

e 1/2 1
Lo :—[__j 999" (gkm/igln/j —Egkl/igmn/j) (1.9)
In addition let us introduce the invariant Lagrangian
1/2
L, = —SA(ﬁj (1.10)
-
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Chapter 1 Theory of Gravitation

Here, A is the cosmological constant. For simplicity we consider dust (no
pressure) with the density p. The Lagrangian for matter can be written in the
form

Ly =—pg;u'u’ (1.12)

where (u') is the four-velocity. It follows by the use of

i
ui =9 (1.12)
dr
and relation (1.8)
_gijuiuj =c’. (1.13)
By the introducing of the constant
K=" (1.14)
the whole Lagrangian has the form:
L=Lg+L, —8xLy,. (1.15)

Here, the constant k denotes the gravitational constant.

1.3 Field Equations

The differential equations for the gravitational potentials (gij) follow from
the variation - equation

GIL(—n)1/2d4x. (1.16)

From Euler’s equations we get by the formulas for the covariant derivatives
(see e.g., [Sop 76], p.189 ff)

{ 1 aL(—n)ﬂz} B 1 8L(—77)1/2

(_77)1/2 agij/k N - (_77)1/2 aglj

(1.17)
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implying by the use of (1.15)
0 0 +L oL
[ Lf} C ; 1) g i (1.18)
6g Tk 7k ag 59
We use the following formulas
o(-G)? 1 0
#z_—(_e)yz i o=-9"9"
og" 2 og

Equation (1.18) implies by the use of these relations and multiplication with
g" the following formula

12
-G o 1
ﬂ J g [gikgkjln _—@nggkl/nj]
- 2
m

1/ -G o jr mk nl 1
=2l — | 9% 979 59 3
2\ -1

mn 1.19
_ 29 /igkllrj ( )

1 . .
+Z5i’ (Lg + Ly )+4x00;,u™u’

These are the field equations of gravitation for dust.

1.4 Equations of Motion and the Energy-Momentum

We will now prove the equivalence of the conservation law of energy-

momentum and the equations of motion. It follows from equation (1.18) by
multiplication with g, and summation

m O 0 mn
{9 l Ir;ﬁ } - tﬁ 9 ik
99k e 997 ik (1.20)
_ O(Lg +Ly) g

mn mn/I _8Kpgmnllgmrgnsurus
a9

The mixed energy-momentum tensors of the gravitational field, of vacuum
energy (given by the cosmological constant A ) and of dust are given by
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Chapter 1 Theory of Gravitation

12
j 11((—- ; 1 1
T(G)li M Gj gmngklgjr[gm’k/ignllr_ngn/igkllr]"_§JiLG‘| (1.21&)

:§ - 2
T(A) =L siL, (1.21b)
P16k !
T(M)' = pg;u™u’ (1.21c)

and the corresponding symmetric tensors are defined by

T(G)Y = g"™T(G)},, TNV = g™T(A), T(M)Y = g"™T(M)), (1.22)

j -G N mn kj
D’ = __77 9 09 m| . (1.239)

/m

Put

Then, the field equations of gravitation (1.19) have the simple form

DI —%5jiDmm = 4xT . (1.23b)

Here,
T/ = T(G)) + T(A)] + T(M)!. (1.23¢)

is the whole energy-momentum tensor of gravitational field, of vacuum energy
and of matter.

The equations (1.23) can be rewritten
. T

It is worth to mention that the equations (1.23) are generally co-variant. In
particular, the energy-momentum of gravitation is a tensor in contrast to the
corresponding pseudo-tensor in Einstein’s general relativity.

The field equations of gravitation (1.23b) and (1.24) are formally similar to
the corresponding equations of general relativity. Here, Dji is a differential
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operator of order two in divergence form for g” whereas in general relativity

there is instead of that the Ricci tensor. The source of the gravitational field in
flat space-time theory of gravitation is the whole energy-momentum tensor
inclusive the one of the gravitational field which is not a tensor in Einstein’s
theory and it does not appear as source for the field.

Relation (1.20) can be rewritten

{gmn ol

Ik mn _5Ik(LG +LA):| :8Kpgmn/kumun y
g™y

N

i.e., we get by the use of (1.21a) and (1.21b)

(TO)" +T(A)"), ==2 PGt

This relation becomes by the substitution of (1.21c) and the use of (1.23c)

m 1

1
i/m —Epgmn,iumu“ ZT(M) i/m _Egmn/iT(M )mn )

Hence, the conservation of the whole energy-momentum
T, =0 (1.25a)
is equivalent with the equations of motion for matter
T(M) P = 5 GmnyiTM™ (1.26)

The conservation law of the whole energy-momentum (1.25a) can be
rewritten

(7"T",) =o0. (1.25b)

/m

The conservation of mass is given by
(pu™ )/m =0, (1.27)

More general energy-momentum tensors for matter can be considered, e.g.
the matter tensors of perfect fluid
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Chapter 1 Theory of Gravitation

T(M)" =(p+p)u'u’ + pc?g? (1.28)

where p denotes the pressure of matter. The conservation law of the whole

energy-momentum and the equivalent equations of motion are also given by the
equations (1.25) and (1.26).

The conservation law of the whole energy-momentum (1.25), the equations
of motion (1.26), and the conservation law of mass (1.27) are given in co-
variant form. The equations of motion (1.26) and the conservation of mass (1.27)
can be rewritten in non-covariant form

1 9 149, m
—(_U)uz a7((—’7)1/2T('V' ), ) = E%T (M) (1.293)
1 9
Waj((—n)ﬂz pu’ ) =0, (1.29b)

The equations (1.29) give for a test particle, i.e. p=0
d k 1agmn m n
—(gu” )J==—""u"u". 1.30
d‘[(glk ) 20 i ( )

It follows by differentiation, the use of (1.11), and some elementary
calculations

i dx™ dx"
dz? T ( )m”E dr

(1.31)

where I'(G)%,,, denote the Christoffel symbols of g;; .

It is worth mentioning that the equations for the gravitational field can be
generalized including electro-magnetic fields, scalar fields, etc., by addition of
the corresponding Lagrangians for these fields to (1.15) which will not be
considered.
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1.5 Field Equations Rewritten

It is sometimes useful for the applications of the gravitational theory to
consider instead of g symmetric tensors defined by

1/2
f”:(£] gl (1.32a)
-1
and
-1/2
fijz(ﬁJ 0 (1.32b)
/
yielding
f f9=51, t*f, =5, (1.33)

Then, the equations for the gravitational field (1.23) can be rewritten
(fmn fikfkj/n )/m :4KTji (1.34)

where the energy-momentum tensor of gravitation has the form

T(G)jizi fmnfklfjr frnk/rfnlli_lfmnlrfklli +£5jiLG (135)
8k 2 2

with
LG = _fmn fkl fr ( f mk/r f nI/s _% f mn/r f kI/sj : (136)
The energy-momentum tensor of perfect fluid is given by
) = -1/2 _ _
T(M )‘i =(p+ p)[—] f. ulu® + pc?s. (1.37)
-n

where

F = det(f, ). (L.38)
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Chapter 1 Theory of Gravitation

The relation (1.13) has the form

-1/2
[ij U -2 (1.39)

1.6 Field Strength and Field Equations

The equations of motion (1.31) of a test particle in the gravitational field are
not generally co-variant.

A co-variant derivative of the four-vector (u‘) of a test particle is

ou' '

o = +Fimnumu". (1.40)
T T

' are the Christoffel symbols of the metric (1.1).
The equations of motion (1.31) can be rewritten by the substitution (1.40)

2 AT (142)

where

Al =T(G) T .. (1.42)

Elementary calculations imply that A" i is a tensor of rank three. Hence, the

equations of motion (1.41) for a test particle in the gravitational field (gij) are

generally co-variant. Similar to the equations of motion for a test particle in the
electro-magnetic field where on the right hand side stands the Lorentz-force

defined by the electro-magnetic field strength the tensor A" j in the equations

(1.41) can be interpreted as gravitational field strength and the right hand side of
(1.41) is the gravitational force.

Elementary calculations give
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6gmn
ox'

=T(G) . 9o +T(G),, Upr -
Hence, it follows

gmn/i =Al—‘rmignr +Arrnigmr '
Therefore, we get

_gmkgim/j = gimgmk/j = gimgknArnmj +Arikj : (1.43)

With the aid of (1.43) all the co-variant derivatives of g" can be replaced by
the gravitational field strength. Elementary calculations give the Lagrangian

12
LG :_2[£j gmn (AFkImAFIkn + gklgrsAFrkmAFSIn _ArrrmAFSsn) (144)
-n

The energy-momentum tensor of the gravitational field has the form

1/2
T(G)ij :i(ﬁj g]” (AFkInArlki +gk|grsArrknArsli _ArrrnArSSi)-'—igjiLG (145)
4x\ -1 16k

It follows for the equations of the gravitational field (1.23b)

12
H%) gmn(Arjin +glg,Ar, —&iATK, )} =—4xTH, | (1.463)

/m

The field equations (1.24) have the form
GV* 1
[(_—J g™ (A]"jin + gjkgi,Al"kn)} :—4/([Tji —EﬁjiTmm). (1.46b)
/m

Summarizing, we have written the theory of gravitation in flat space-time by
the use of the field strength of gravitation similar to Maxwell’s theory written
with the aid of the electro-magnetic field strength.
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1.7 Angular-Momentum

We will now derive the conservation law of the whole angular-momentum.
Let us start from the conservation law of the whole energy-momentum (1.25b)
which can be rewritten

1 0

12 <im i <mn
(_n)llza)(_m((_n) 2T )+rmnT =0 (1.47a)

where we have introduced the non-symmetric energy-momentum tensor

Ti=p™i . (1.47b)

In an inertial frame, i.e. the metric tensor (nij) is constant and therefore

Fijk =0 the relation (1.47a) implies a conservation law of the whole energy-
momentum. Therefore, we get

P = [(-n) T (=1 (149

Where P is a constant and the integration is taken over the whole space.
Equation (1.47a) gives

1 0

= 9 IR — i it
(—?7)1/2 aXm( (-n) ) ml . (1.49)

The field equations (1.23) imply

U2
Siim 1/(-G mn (i ' 1
T =p T]mzﬂl[__ﬂj g (’Ikgmgjl/n_Eﬂjgmgkl/nﬂ :
/m

The substitution of this relation into equation (1.49) and the subtraction from
the arising from the same equation where i and j are exchanged yields

(X! ()T =X ()T

_ A (I -

1 0
(_77)1/2 aXm

(1.50)
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with the contra-variant tensor

Akl -

) 1(-G 1/2 o o
A”k_—[_j gkmgrs(nlsgjrlm_nlsglrlm)' (151)

It follows from equation (1.50) by the use of relations for the co-variant
derivatives of tensors of order three
1 0

Wax—m((—n)m(x‘fim T AIM))

(1.52)
z(le—umn _ Xlern )-Ifmn _FlmnAnjm _rjmnAmm

These equations imply in uniformly moving frames the conservation law of
the angular-momentum, i.e.

N V2 - . - . " ..
MU = [(=) [ XTH —xITH 4+ AT Jd (i,]=12,3,4)  (L53)
is constant for all times. The first two expressions correspond to the usual

definition of the angular momentum. To study the last expression we use the
first part of the relation (1.43) and rewrite (1.51)

ijk 1(-G v kr sm in ¢j jn oi
A :E - Ogmd 9 /r(77 55_77 55) (154)

We now define the canonical momentum

_ 1

T o, (1.55a)
implying
1/2
1 _G 4k . mn 1
I;; 2_8_1((__77) 970 ki [gimgjn _Egijgmnj' (1.55b)
The Hamiltonian is given by

mn 1

H =09 _].G_KLG : (1.56&)
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Elementary computations give

H=-T(G)",, (1.56b)

i.e. H isthe energy density of the gravitational field. It follows from (1.54) by
the use of relation (1.55b)

A =2(80,6% =807 )™ 9" T, (1.57)
We define for i, j=1,2,3,4 the anti-symmetric four-matrices
2 =(2 )= (6700 =807, (1.58)
with the proper-values 0, £i. The relation (1.57) can be rewritten
A =258 ™ g, . (1.59)

Hence, the last expression in equation (1.53) of the angular momentum can
be interpreted as consequence of the spin of the gravitational field.

1.8 Equations of the Spin Angular Momentum

In this sub-chapter we follow along the lines of Papapetrou [Pap 51] who
uses a method of Fock [Foc 39]. The following detailed calculations can be
found in [Pet 91].

The equations of motion for matter (1.29a) can be written in the form:

#%((_’NZT (M )im): (G, T(M)" (1.60)

where it is assumed that T(M)Y vanishes outside of a narrow tube which
surrounds the world line of the test particle. The test particle describes a world

line X (t)=(Xi (t)) with X*(t)=ct. Letus put in analogy to [Pap 51]

M =u () T(M)"d (161a)
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M = (X =X (0) ()T (M) d*X

Y z_ui“(MijA_MjiA).

We obtain the equations of motion

d Mi4 _ i mn 8 i kmn
a(?j——r(G)mM +67(F(G)mn'\" )

and of the spin angular momentum

Furthermore, we have
ZMIjk :_(7/Ijuk +7/Ikuj)+u_4(74juk +74kuj)
MIJ4+MJI4_ U]/ J)/I4

M4 — _u4}/i4

ioufu! d(mis i
Mu:_ _M44 (G Mjmn
u“(u4 dr[ ut j (©) J

_dif{'\"'”} rG)y mm.

(1.61b)

(1.61c)

(1.62a)

(1.62b)

(1.63a)

(1.63b)

(1.63¢)

(1.63d)

Some of the relations (1.62) are identities. Therefore, we have eight equations
(four equations (1.62a), three equations (1.62b) and one equation (1.13) for the
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eleven unknowns quantities M*, u' (i=1,2,3,4), and " (i,j=123). It is
proved in [Pap 51] that »" is the components of a tensor and the expression

11
cdu?

m=— (Mm4 +T(G)", 7/"4u')um (1.64)

is a scalar where u, =g;,,u™ . We will now give a co-variant formulation of the
equations (1.62).

In analogy to (1.40) we define the co-variant derivative

D%yii _ = %yij ATy, (1.65)

Let us introduce the anti-symmetric tensor
Aij D ij i mj, .n j im, .n
:Ey +AT Ly + ALY MUl (1.66)

Then, we have by (1.62b), (1.63a), (1.42) and (1.65)

A — A
u u

A% =0. (1.67)

When we multiply (1.67) with u; we get

. m I .
L a =—“—2[“—4Am4+A'mj. (1.68)
u c™\u

By the use of the last two relations we get the co-variant form of (1.62b)
I - oo
Al +C—2um(uJA'm—u'A‘m)=O. (1.69)

We will now give (1.62a) in co-variant form and write (1.63d) for j=4 with
the aid of (1.63a), (1.63c), M*' =0 (1.65) and (1.66)

. _ i
M™“+T(G) y™u" = A +L‘—4(M“4 +(6),, 7). (L70)
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We get by multiplying this relation with u—4and the use of (1.64)
u

(ut)

Hence, we get from (1.70) by the use of (1.71) and (1.68)

44 4 man)_ 1 Uy yma
(M# (G, ™) =me-+ - A™ (1.72)

1 i4 i 1 i k4,1 1 ik
—M"=mcu’ ——=TI(G u—-——uA".
u4 u4 ( )k|7 CZ k

Now, it follows from (1.62a) by the use of (1.68), (1.61) and elementary
calculations

d i1 ik ik 1 Ir
a(mcu —C—zukA )+F(G)klu (mcu —C—zurA

0 i i n m (1.72)
o Lr(@), +1(6),, 16, )
=0
The introduction of the co-variant derivative of a four-vector gives
DR(mcui —%umAimJ+AF‘mnum (mcun —izukA”kj
¢ ¢ ¢ (1.73)

1.
+§ lenkynmuk =0
where R'__ is the curvature tensor of g; - Although the equations (1.62a) and

(1.62b) are identical with those of general relativity the co-variant forms (1.73),
(1.69) together with (1.66) are different from those of general relativity [Pap 51].

7" which is defined by (1.61c) is not the spin in flat space-time theory of
gravitation. The spin of a particle must be defined by

$1 = [(x = X' (1))(-n)"*T (M) d°
—[(3 =X () (=n)"*T (M) dx

mnk

(1.74)
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In Einstein’s theory the motion of a spin in free fall can be described
according to the equations of parallel transport (see e.g. [Wei 72]. This is not
possible by the use of flat space-time theory of gravitation.

1.9 Transformation to Co-Moving Frame

In the previous sub-chapter we have seen that there are not enough equations
for the spin components. Schiff [Sch 80] remarked that one has to transform the
equations of spin components to the co-moving frame, i.e. to the frame of the
gyroscope. We use the considerations of Petry [Pet 86] to transform from a

preferred frame X' with (7;')=diag(L11-1) to a non-preferred frame X
moving with velocity v'=(v1',v2',v3‘) relative to the frame X' . Let

(X*1(),X2(t"), X'(t")) be the distance vector of 3 from X'. Then,

d iven_ i
X)) =" (1.75)

The transformations of quantities in X' to the corresponding ones in the co-
moving frame X are given in [Pet 86]

<)

X=X +(7/’1 —1) L —+ X''(tY), gp'=pdt (1.76a)
v' C
C
with
2\V2
\Y
y :[1_ i j ) (1.76b)
C

It is sufficient to consider (1.76) up to quadratic expressions in the absolute
value of the velocity |v], i.e.

1 i
e —E(X,V—jv—+ X' d'['z[l+1 v
2 2

c/C

; Jdt . (1.77)
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In the frame X' we consider equation (1.62b), multiplied with dz/dt", the
use of (1.63a) and u'/u*'=v'"c,i.e.

. i . IK A . i .
i'}/'l '+V_i.714'_v_iyl4l_(r(e)l Imn_v_r(G)4 lmnjyjm vt

+(F(G)j 'mn——'r(c;)4 'mnjy"“ W (1.78)

Furthermore, it follows

_m XX
ax™ ax"

ij

We get after some calculations for the spin tensor 7" in X

i Y S N AV LN TURY SRS RO B Y
7/”Iz7/u+?7/4J+_7I4__(?Z7/kj?+727”<? (1.79a)

c 2 k=1 k=L
1|2 in 3 k
i44 1lv i4 1V ka V
| 1+ P - —. 1.79b
4 ( 2|c 72 C ;7 C ( )

If we substitute (1.79) into (1.78) and neglect expressions of the form

. VIV .
I*,,—— it follows by elementary calculations
cc

. . . . - 3 . . . -
%}/IJ ZF(G)444(—VI .7/14 4yl I7I4)_(ZQIK7Jk —ij}/'kJ (180&)
k=1

where
i'_73 ik i 4 i,é i 1 i
Qi = [kZF(G) v +F(G)J.4C r(G) ,v +2r(G)le +2F(G) wV J (1.80b)

IS 4

We will now apply the result to the spin angular momentum of a test particle
in the gravitational field of a spherically symmetric body in the preferred frame
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' with mass M and angular velocity @ . It holds in X' up to linear
approximations

9 =9 (1+2kTMJ’(i’ =123

cr
kMY
=—|1-2— | (i=j=4 1.81
125t -i-9) ey
2k 1

:__3_3[a)x X']y(l :41 J :112!31| :11213! j :4)
cr
where J is the momentum of inertia. We get by elementary computations

32} kM 1 i i
r= k ,Qn:sz:QSBz el -, -,Qu:_le,- i
(kzll|x|J ra r3(x v i #

Put
Q =<Q23 Q3l QlZ)
then, we have
3kM 1 kJ 1 X'\ @
Qz————[X'XV']ﬁ-—Z—S[a)—?)#X‘J. (182)
cr r
We define 7 =(7/23,y31,;/12) . Relation (1.81a) is rewritten in the form

d KM
dt‘y crd

(X',V');/—[Qxy/]. (1.83a)

By the use of the law of Newton

we get
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st[l dv’ v_'} I:J (w_3(x"f’)x-) (1.83b)

cdt' c¢| c?r r

We consider instead of » the spin. We get in X by the use of the standard
transformation formula, considering only expressions which are quadratic in the

velocity and linear in the expressmn , the use of (1.81)
C

(1.84)
~—, (i=4j=123)

(1 zkﬂj( _j=1)

cr
The metric tensor has the form
Ny =8y, (i,i=1,2,3,4)
=—, (i=1,23j=4)

c
_vj'l (i=4i- (1.85)

We get from the definition (1.74), (1.85) and (1.61) for i,j=1,2,3

ST =7 "G [ X (=) T (M) d* =19 [ X (=) "*T (M) ¢

(1+ ZMJJ/”
cr

Hence, it holds
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kM
yz(l—ZEjS . (1.86)

We have by the substitution of (1.86) into the relation (1.83a)
v

|2
d iy oM Vs :(l—Zij[QxS],
dt’ cr lc c’r

By the use of the conservation law of energy

2

1vP kM
Z|=| —=—=const
2lc|  c?r
we get
95+ [axs]. (1.87)
dt

Equation (1.87) gives the precession of the spin of a test particle with
constant angular velocity. It agrees with the corresponding result of general
relativity [Sch 60]. The angular momentum of a gyroscope processes without
changing in magnitude. The results about the spin angular momentum and the
gyroscope agree with those of general relativity.

All these results of the sub-chapters 1.8 and 1.9 can be found in [Pet 91]. For
experimental technical problems compare Will [Wil 81].

The results of chapter | about the theory of gravitation in flat space-time can
be found in the articles of Petry [Pet 79, 81a, 82,93b].

It is worth to mention the article [Cah 07] of Cahill who has studied a theory
of gravitation with application to cosmology by a method which is totally
different from general relativity and any bi-metric theory.

1.10 Approximate Solution in Empty Space

By the use of general relativity approximate solutions in empty space are
received by linearization of the non-linear equations. This can also be
considered by the use of flat space-time theory of gravitation as will be seen in
sub-chapter 2.2. Therefore, we will study the linearization of the gravitational
field. We start from the gravitational theory in flat space-time (1.23) together
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with the conservation of the whole energy-momentum (1.25). Formula (1.23b)
of the field equations implies by the use of covariant differentiation, the
conservation law (1.25a) and the use of the pseudo-Euclidean geometry (1.5)

2 p/ 19 pm_y (i=1-4). (1.88)

axJ 1 2 dxt
Relation (1.88) gives by the use of linearization, i.e.
gy =¥ + Agl
the linearized expression
Therefore, relation (1.88) can be written in the form

mn 0 0

n axmaxn{nlkax] gkj_zﬁ(nkl gkl)}

The operator in front of the bracket is the wave operator. Hence we get
a
Mk 5589" — gg(ﬂszgkl) (i=1-4). (1.89)

Relation (1.89) is identical with the result of general relativity (see
e.g.[Rob 68], p. 256, [Sex 83], p.175) which is used for many applications.The
derivation of relation (1.89) in empty space (no matter) uses the fact that in
empty space a gravitational field exists which must be considered. The quite
different study of linear approximations of the gravitational field by flat space-
time theory of gravitation and general relativity follows from the different
sources in the theories. Flat space-time theory of gravitation has the whole
energy-momentum as source whereas general relativity has only the matter
tensor. In general relativity the energy-momentum is not a tensor which implies
many difficulties (see the extensive study of Logunov and co-workers (see e.g.
[Log 86 ], [Den 82,84]).

A comparison of the theory of gravitation in flat space-time and the theory of general
relativity is given in [Pet 14a].
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