

Chapter 3

Basic Programming Robot

http://www.sciencepublishinggroup.com 35

On successful completion of this course, students will be able to:

 Explain about robot’s actuators.

 Program the sensors and motors for robot.

Introduction

Robot becomes a new trend of students and engineers, especially with a main

event and a robotics Olympiad each year. Programming the robot using

microcontroller is the basic principle of controlling the robot, where the

orientation of the microcontroller is to control the application of an information

system based on the inputs received, and processed by a microcontroller, and

the action performed on the output corresponding predetermined program.

Robot’s Actuators

Actuators are an important part of the robot that functions as an activator of

the command given by the controller. Usually, an electromechanical actuator

device produces movement. Actuator consists of two types:

 Electric Actuators.

 Pneumatic and Hydraulic Actuators.

In this sub-section will discuss the electric actuator which is often used as a

producer of such rotational motion of the motor.

DC Motor

A DC Motor in simple words is a device that converts direct current

(electrical energy) into mechanical energy. It’s of vital importance for the

industry today, and is equally important for engineers to look into the working

principle of DC motor in details. The very basic construction of a DC motor

contains a current carrying armature which is connected to the supply end

through commutator segments and brushes and placed within the north south

poles of a permanent or an electro-magnet as shown in the figure below:

Modern Robotics with OpenCV

36 http://www.sciencepublishinggroup.com

Figure 3.1 DC Motor diagram.

To understand the operating Principle of DC motor, it is important that we

have a clear understanding of Fleming’s left hand rule to determine the direction

of force acting on the armature conductors of dc motor. Fleming’s left hand rule

says that if we extend the index finger, middle finger and thumb of our left hand

in such a way that the current carrying conductor is placed in a magnetic field

(represented by the index finger) is perpendicular to the direction of current

(represented by the middle finger), then the conductor experiences a force in the

direction (represented by the thumb) mutually perpendicular to both the

direction of field and the current in the conductor.

http://www.electrical4u.com/fleming-left-hand-rule-and-fleming-right-hand-rule/
http://www.electrical4u.com/fleming-left-hand-rule-and-fleming-right-hand-rule/

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 37

Figure 3.2 Fleming’s left hand rule.

Figure below displays a DC motor with gearbox used on the robot to improve

torque:

Figure 3.3 An example of DC Motor with gearbox 7.2V 310RPM.

Servo Motor

Another important actuators are servo motors, which can work the wheel or

as a robot arm or gripper. Servo motors are often used is continuous Servo

Parallax, Parallax standard servo, GWS-S03, Hitec HS-805BB and HS-725BB.

Some of the grippers are often used in the lab. Robot gripper usually based on

http://www.electrical4u.com/fleming-left-hand-rule-and-fleming-right-hand-rule/

Modern Robotics with OpenCV

38 http://www.sciencepublishinggroup.com

aluminum, lynxmotion robotic gripper hand and fingers are very popular as

follows:

(a) (b)

Figure 3.4 Lynxmotion robot hand RH1 with 2 servos (a) and gripper finger

using 5 servos to 14 joint (b).

Author recommends that you conduct experiments and make system-based

visual servoing robotic arm that can pick up an object using a robotic arm based

stereo camera. The robot arm is best used Dagu 6 degress of freedom and

AX18FCM5 Smart Robotic arm that uses the CM-5 controller, Full feedback

for position, speed, load, voltage and temperature, full control over position

(300 degrees), uses servo AX-18F and is compatible with MATLAB and other

common microcontroller systems.

(a) (b)

Figure 3.5 Dagu 6 degree freedom arm robotic system using aluminum Dagu gripper

(a) and AX18FCM5 Smart Robotic arm using CM-5 controller (b)[1].

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 39

Programming Motors of Robot

DC motors are usually driven by an H-Bridge since such a circuit can reverse

the polarity of the motor connected to it. The DC brushed motors included in

this kit are driven by the L6205 H-Bridge on the Propeller Robot Control Board.

Understanding how to control this H-Bridge is the key to controlling the

direction, speed and duration that the motors are on or off. Parallax has released

a Propeller object called, “PWM_32” which makes it easy to drive servos as

well as control motors using pulse width modulation. This object can be used

with the Propeller Robot Control Board to drive the on-board H-Bridge, which

in turn drives the DC motors.

The L6205 inputs are connected to P24 through P27 on the Propeller chip.

When the power switch on the control board is set for POWER ON/MOTORS

ON, the L6205 is enabled and the outputs are connected to the motors. The truth

table for controlling the L6205 is shown below in Table 3.1. P24 and P25

control the left motor while P26 and P27 control the right motor. This table

assumes the motors are connected to the control board as defined in the

assembly instructions.

Table 3.1 Motor truth table.

P24 P25 P26 P27 Left Motor Right Motor

0 0 0 0 Brake Brake

1 0 0 0 Reverse Brake

0 1 0 0 Forward Brake

1 1 0 0 Brake Brake

0 0 1 0 Brake Forward

1 0 1 0 Reverse Forward

0 1 1 0 Forward Forward

1 1 1 0 Brake Forward

0 0 0 1 Brake Reverse

1 0 0 1 Reverse Reverse

0 1 0 1 Forward Reverse

1 1 0 1 Brake Reverse

0 0 1 1 Brake Brake

1 0 1 1 Reverse Brake

0 1 1 1 Forward Brake

1 1 1 1 Brake Brake

Modern Robotics with OpenCV

40 http://www.sciencepublishinggroup.com

Note that it may be more intuitive to look at the table as two groups

consisting of P24/P25 and P26/P27. In this manner you have 4 possible

combinations for each motor as shown in Table 3.2.

Table 3.2 The value given to P24 and P25 and P26 and 27 for the motors.

P24 P25 Left Motor P26 P27 Right Motor

0 0 Brake 0 0 Brake

1 0 Reverse 1 0 Forward

0 1 Forward 0 1 Reverse

1 1 Brake 1 1 Brake

The program to make the left motor active is shown below:

File: LeftMotorTest.spin

CON

_xinfreq = 5_000_000

_clkmode =xtal1 + pll16x

PUB Main

Dira[27..24] := %1111 ' Set P24 – P27 to output

Outa [25] : = 1 ' Left motor forward

Waitcnt (clkfreq * 2 + cnt) ' 2 seconds pause

Outa [25] :=0 ' Left motor stop

Waitcnt (clkfreq * 2 + cnt)

Outa[24] :=1 ' Left motor reverse

Waitcnt (clkfreq * 2 + cnt)

Outa[24] :=0

repeat

To control the speed of a DC motor can use PWM (Pulse Width Modulation),

with the following example:

File : PWMx8.spin

CON

resolution = 256 'The number of steps in the pulse

widths. Must be an integer multiple of 4.

nlongs = resolution / 4

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 41

VAR

long fcb[5]

long pwmdata[nlongs]

long pinmask

long previndex[8]

byte cogno, basepin

PUB start(base, mask, freq)

' This method is used to setup the PWM driver and start its cog.

If a driver had

' already been started, it will be stopped first. The arguments

are as follows:

' base: The base pin of the PWM output block. Must be 0, 8,

16, or 24.

' mask: The enable mask for the eight pins in the block:

' bit 0 = basepin + 0

' bit 1 = basepin + 1

' ...

' bit 7 = basepin + 7

'

' Set a bit to 1 to enable the corresponding pin for

PWM ouput.

'

' freq: The frequency in Hz for the PWM output.

'

if (cogno)

stop

freq *= resolution

if (clkfreq =< 4000000 or freq > 20648881 or clkfreq < freq *

135 / 10 or clkfreq / freq > 40000 or base <> base & %11000 or

mask <> mask & $ff or resolution <> resolution & $7ffffffc)

return false

basepin := base

pinmask := mask << base

longfill(@pwmdata, 0, nlongs)

longfill(@previndex, 0, 8)

fcb[0] := nlongs

fcb[1] := freq

fcb[2] := constant(1 << 29 | 1 << 28) | base << 6 | mask

Modern Robotics with OpenCV

42 http://www.sciencepublishinggroup.com

fcb[3] := pinmask

fcb[4] := @pwmdata

if (cogno := cognew(@pwm, @fcb) + 1)

return true

else

return false

PUB stop

' This method is used to stop an already-started PWM driver. It

returns true if

' a driver was running; false, otherwise.

if (cogno)

cogstop(cogno - 1)

cogno~

return true

else

return false

PUB duty(pinno, value) | vindex, pindex, i, mask, unmask

' This method defines a pin's duty cycle. It's arguments are:

' pinno: The pin number of the PWM output to modify.

' value: The new duty cycle (0 = 0% to resolution = 100%)

' Returns true on success; false, if pinno or value is invalid.

if (1 << pinno & pinmask == 0 or value < 0 or value >

resolution)

return false

pinno -= basepin

mask := $01010101 << pinno

unmask := !mask

vindex := value >> 2

pindex := previndex[pinno]

if (vindex > pindex)

repeat i from pindex to vindex - 1

pwmdata[i] |= mask

elseif (vindex < pindex)

repeat i from pindex to vindex + 1

pwmdata[i] &= unmask

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 43

pwmdata[vindex] := pwmdata[vindex] & unmask | mask &

($ffffffff >> (31 - ((value & 3) << 3)) >> 1)

previndex[pinno] := vindex

return true

Sensors for Intelligent Robot

Ultrasonic Distance Sensor: PING)))™

PING)))™ ultrasonic sensor provides an easy method of distance

measurement. This sensor is perfect for any number of applications that require

you to perform measurements between moving or stationary objects. Interfacing

to a microcontroller is a snap. A single I/O pin is used to trigger an ultrasonic

burst (well above human hearing) and then "listen" for the echo return pulse.

The sensor measures the time required for the echo return, and returns this value

to the microcontroller as a variable-width pulse via the same I/O pin. The

PING))) sensor works by transmitting an ultrasonic (well above human hearing

range) burst and providing an output pulse that corresponds to the time required

for the burst echo to return to the sensor. By measuring the echo pulse width,

the distance to target can easily be calculated.

Key Features:

 Provides precise, non-contact distance measurements within a 2 cm to 3 m

range for robotics application.

 Ultrasonic measurements work in any lighting condition, making this a

good choice to supplement infrared object detectors.

 Simple pulse in/pulse out communication requires just one I/O pin.

 Burst indicator LED shows measurement in progress.

 3-pin header makes it easy to connect to a development board, directly or

with an extension cable, no soldering required.

The PING))) sensor detects objects by emitting a short ultrasonic burst and

then "listening" for the echo. Under control of a host microcontroller (trigger

pulse), the sensor emits a short 40 kHz (ultrasonic) burst. This burst travels

through the air, hits an object and then bounces back to the sensor. The PING)))

sensor provides an output pulse to the host that will terminate when the echo is

detected, hence the width of this pulse corresponds to the distance to the target.

Modern Robotics with OpenCV

44 http://www.sciencepublishinggroup.com

Figure 3.6 The basic principle of ultrasonic distance sensor [2].

Figure 3.7 Communication protocol of the PING))).

This circuit allows you to quickly connect your PING))) sensor to a BASIC

Stamp/Propeller Board. The PING))) module’s GND pin connects to Vss, the 5

V pin connects to Vdd, and the SIG pin connects to I/O pin P15.

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 45

Figure 3.8 PING))) to the board.

Here is an example of using the Ping sensor shown in Serial LCD 4x20.

File: Ping_Demo.spin

CON

_clkmode = xtal1 + pll16x

_xinfreq = 5_000_000

PING_Pin = 15 ' I/O Pin For PING)))

LCD_Pin = 1 ' I/O Pin For LCD

LCD_Baud = 19_200 ' LCD Baud Rate

LCD_Lines = 4 ' Parallax 4X20 Serial LCD (#27979)

VAR

long range

OBJ

LCD: "debug_lcd"

ping: "ping"

PUB Start

LCD.init(LCD_Pin, LCD_Baud, LCD_Lines) ' Initialize LCD

Object

LCD.cursor(0) ' Turn Off Cursor

LCD.backlight(true) ' Turn On Backlight

LCD.cls ' Clear Display

LCD.str(string("PING))) Demo", 13, 13, "Inches -", 13,

"Centimeters -"))

Modern Robotics with OpenCV

46 http://www.sciencepublishinggroup.com

repeat ' Repeat Forever

LCD.gotoxy(15, 2) ' Position Cursor

range := ping.Inches(PING_Pin) ' Get Range In Inches

LCD.decx(range, 2) ' Print Inches

LCD.str(string(".0 ")) ' Pad For Clarity

LCD.gotoxy(14, 3) ' Position Cursor

range := ping.Millimeters(PING_Pin) ' Get Range In

Millimeters

LCD.decf(range / 10, 3) ' Print Whole Part

LCD.putc(".") ' Print Decimal Point

LCD.decx(range // 10, 1) ' Print Fractional Part

waitcnt(clkfreq / 10 + cnt) ' Pause 1/10 Second

Robot avoider is a robot that able to avoid the obstacle at the in front of the

robot or at the left or right side of the robot. Here's an example using a PING)))

as an avoider robot that only able to detect the obstacle in front of the robot

using 1 PING))).

Serial_LCD_Avoider.spin:

‘ Copyright Dr. Widodo Budiharto

‘ www.toko-elektronika.com 2014

CON

_clkmode = xtal1 + pll16x

_xinfreq = 5_000_000

LCD_PIN = 23

PING_Pin = 13 ' I/O Pin For PING)))

LCD_Baud = 19_200

LCD_Lines=2

VAR

long range

OBJ

Serial : "FullDuplexSerial.spin"

LCD : "debug_lcd"

ping : "ping"

PUB Main

Dira[27..24]:= %1111 ' Set P24 P27 to be output

http://www.toko-elektronika.com/

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 47

LCD.init(LCD_Pin, LCD_Baud, LCD_Lines) ' Initialize LCD

Object

LCD.cursor(0) ' Turn Off Cursor

LCD.backlight(true) ' Turn On Backlight

LCD.cls

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("WIDODO.COM"))

repeat

range := ping.Millimeters(PING_Pin) ' Get Range In

Millimeters

LCD.gotoxy(3, 1)

LCD.decf(range / 10, 3) ' Print Whole Part

LCD.putc(".") ' Print Decimal Point

LCD.decx(range // 10, 1) ' Print Fractional Part

LCD.gotoxy(10, 1)

LCD.str(string("Cm"))

if range >400

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq / 2 + cnt) '

Outa[25]:= 1 ' Left motor forward

Outa[26]:= 1 ' Right motor forward

waitcnt(clkfreq / 10 + cnt) ' Pause 1/10 Second

if range <=400

'reverse

Outa[25]:= 0 ' Left motor stop

Outa[26]:= 0 ' Right motor stop

waitcnt(clkfreq / 2 + cnt) ' Pause

Outa [24] :=1 ' Left motor reverse

Outa [27] :=1 ' Right motor reverse

'turn left

Outa [24] :=1 ' Left motor reverse

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq/5 + cnt) ' Pause 1/10 Second

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

Modern Robotics with OpenCV

48 http://www.sciencepublishinggroup.com

Now, if we want an intelligent robot that able to avoid the obstacle using 3

PING))), we can propose the system as shown in figure 3.9.

Figure 3.9 Avoider robot using 3 PING))) on the body.

Avoider_LCD_3PING.spin

‘ Avoider Robot, copyright Dr. Widodo Budiharto, 2014

CON

_clkmode = xtal1 + pll16x

_xinfreq = 5_000_000

LCD_PIN = 23

PINGRight_Pin=0 ' I/O Pin For PING)))

PINGFront_Pin = 13

PINGLeft_Pin=22

LCD_Baud = 19_200

LCD_Lines=2

VAR

long rangeFront

long rangeRight

long rangeLeft

OBJ

Serial : "FullDuplexSerial.spin"

LCD : "debug_lcd"

ping : "ping"

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 49

PUB Main

Dira[27..24]:= %1111 ' Set P24 P27 to be output

LCD.init(LCD_Pin, LCD_Baud, LCD_Lines) ' Initialize LCD Object

LCD.cursor(0) ' Turn Off Cursor

LCD.backlight(true) ' Turn On Backlight

LCD.cls

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("WIDODO.COM"))

waitcnt(clkfreq/2 + cnt) ' Pause 1/10 Second

repeat

rangeFront := ping.Millimeters(PINGFront_Pin) ' Get Range In

Millimeters

rangeRight := ping.Millimeters(PINGRight_Pin) ' Get Range In

Millimeters

rangeLeft := ping.Millimeters(PINGLeft_Pin) ' Get Range In

Millimeters

LCD.gotoxy(0, 1)

LCD.decf(rangeLeft / 10, 3) ' Print Whole Part

LCD.gotoxy(5, 1)

LCD.decf(rangeFront / 10, 3) ' Print Whole Part

LCD.putc(".") ' Print Decimal Point

LCD.decx(rangeFront // 10, 1) ' Print Fractional Part

LCD.gotoxy(12, 1)

LCD.decf(rangeRight / 10, 3)

if rangeFront >200 and rangeRight>200

LCD.cls

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("FORWARD"))

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq / 2 + cnt) '

Outa[25]:= 1 ' right motor forward

Outa[26]:= 1 ' left motor forward

waitcnt(clkfreq / 10 + cnt) ' Pause 1/10 Second

if rangeFront <=200

LCD.cls

Modern Robotics with OpenCV

50 http://www.sciencepublishinggroup.com

'reverse

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("REFERSE"))

Outa[25]:= 0 ' left motor stop

Outa[26]:= 0 ' right motor stop

waitcnt(clkfreq / 5 + cnt) ' Pause

Outa [24] :=1 ' Left motor reverse

Outa [27] :=1 ' Right motor reverse

waitcnt(clkfreq + cnt) ' Pause

if rangeRight<=200

LCD.cls

'turn left

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("TURN LEFT"))

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq/10 + cnt) ' Pause 1/10 Second

Outa[25]:= 1 ' left motor forward

waitcnt(clkfreq/2 + cnt) ' Pause 1/10 Second

Outa[25]:= 0 ' left motor stop

if rangeLeft<=200

LCD.cls

'turn right

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("TURN RIGHT"))

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq/10 + cnt) ' Pause 1/10 Second

Outa[26]:= 1 ' right motor forward

waitcnt(clkfreq/2 + cnt) ' Pause 1/10 Second

Outa[26]:= 0 ' right motor stop

Compass Module: 3-Axis HMC5883L

The Compass Module 3-Axis HMC5883L is designed for low-field magnetic

sensing with a digital interface. This compact sensor fits into small projects

such as UAVs and robot navigation systems. The sensor converts any magnetic

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 51

field to a differential voltage output on 3 axes. This voltage shift is the raw

digital output value, which can then be used to calculate headings or sense

magnetic fields coming from different directions.

Key Features:

 Measures Earth’s magnetic fields.

 Precision in-axis sensitivity and linearity.

 Designed for use with a large variety of microcontrollers with different

voltage requirements.

 3-Axis magneto-resistive sensor.

 1 to 2 degree compass heading accuracy.

 Wide magnetic field range (+/-8 gauss).

 Fast 160 Hz maximum output rate.

 Measures Earth’s magnetic field, from milli-gauss to 8 gauss.

(a)

 (b)

Figure 3.10 Compass module (a) and the schematic (b).

Here is an example code for using Compass module:

DemoCompass.spin:

Modern Robotics with OpenCV

52 http://www.sciencepublishinggroup.com

OBJ

pst : "FullDuplexSerial" ' Comes with Propeller Tool

CON

_clkmode = xtal1 + pll16x

_clkfreq = 80_000_000

datapin = 1 ' SDA of compass to pin P1

clockPin = 0 ' SCL of compass to pin P0

WRITE_DATA = $3C ' Requests Write operation

READ_DATA = $3D ' Requests Read operation

MODE = $02 ' Mode setting register

OUTPUT_X_MSB = $03 ' X MSB data output register

VAR

long x

long y

long z

PUB Main

waitcnt(clkfreq/100_000 + cnt) ' Power up delay

pst.start(31, 30, 0, 115200)

SetCont

repeat

SetPointer(OUTPUT_X_MSB)

getRaw ' Gather raw data from compass

pst.tx(1)

ShowVals

PUB SetCont

' Sets compass to continuous output mode

start

send(WRITE_DATA)

send(MODE)

send($00)

stop

PUB SetPointer(Register)

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 53

' Start pointer at user specified register (OUT_X_MSB)

start

send(WRITE_DATA)

send(Register)

stop

PUB GetRaw

' Get raw data from continuous output

start

send(READ_DATA)

x := ((receive(true) << 8) | receive(true))

z := ((receive(true) << 8) | receive(true))

y := ((receive(true) << 8) | receive(false))

stop

~~x

~~z

~~y

x := x

z := z

y := y

PUB ShowVals

' Display XYZ compass values

pst.str(string("X="))

pst.dec(x)

pst.str(string(", Y="))

pst.dec(y)

pst.str(string(", Z="))

pst.dec(z)

pst.str(string(" "))

PRI send(value)

value := ((!value) >< 8)

repeat 8

dira[dataPin] := value

dira[clockPin] := false

Modern Robotics with OpenCV

54 http://www.sciencepublishinggroup.com

dira[clockPin] := true

value >>= 1

dira[dataPin] := false

dira[clockPin] := false

result := !(ina[dataPin])

dira[clockPin] := true

dira[dataPin] := true

PRI receive(aknowledge)

dira[dataPin] := false

repeat 8

result <<= 1

dira[clockPin] := false

result |= ina[dataPin]

dira[clockPin] := true

dira[dataPin] := aknowledge

dira[clockPin] := false

dira[clockPin] := true

dira[dataPin] := true

PRI start

outa[dataPin] := false

outa[clockPin] := false

dira[dataPin] := true

dira[clockPin] := true

PRI stop

dira[clockPin] := false

dira[dataPin] := false

Gyroscope Module 3-Axis L3G4200D

The Gyroscope Module is a low power 3-Axis angular rate sensor with

temperature data for UAV, IMU Systems, robotics and gaming. The gyroscope

shows the rate of change in rotation on its X, Y and Z axes. Raw angular rate

and temperature data measurements are accessed from the selectable digital I2C

or SPI interface. The small package design and SIP interface accompanied by

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 55

the mounting hole make the sensor easy to integrate into your projects.

Designed to be used with a variety of microcontrollers, the module has a large

operating voltage window.

Key Features:

 3-axis angular rate sensor (yaw, pitch & roll) make it great for model

aircraft navigation systems.

 Supports both I2C and SPI for whichever method of communication you

desire.

 Three selectable scales: 250/500/2000 degrees/sec (dps).

 Embedded power down and sleep mode to minimize current draw.

 16 bit-rate value data output.

Figure 3.11 Gyroscope Module 3-Axis L3G4200D (a) and general schematic (b).

Program below demonstrates X, Y, Z output to a serial terminal and uses

default (I²C) interface on the Gyroscope mo dule.

Gyro_Demo.spin

CON

Modern Robotics with OpenCV

56 http://www.sciencepublishinggroup.com

_clkmode = xtal1 + pll16x

_clkfreq = 80_000_000

SCLpin = 2

SDApin = 4

'****Registers****

WRITE = $D2

READ = $D3

CTRL_REG1 = $20 'SUB $A0

CTRL_REG3 = $22

CTRL_REG4 = $23

STATUS_REG = $27

OUT_X_INC = $A8

x_idx = 0

y_idx = 1

z_idx = 2

VAR

long x

long y

long z

long cx

long cy

long cz

long ff_x

long ff_y

long ff_z

long multiBYTE[3]

OBJ

Term : "FullDuplexSerial"

PUB Main | last_ticks

''Main routine for example program - Shows RAW X,Y,Z data and

example of calculated data for degrees

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 57

term.start(31, 30, 0, 115200) 'start a terminal Object

(rxpin, txpin, mode, baud rate)

Wrt_1B(CTRL_REG3, $08) 'set up data ready signal

Wrt_1B(CTRL_REG4, $80) 'set up "block data update" mode

(to avoid bad reads when the values would get updated while we

are reading)

Wrt_1B(CTRL_REG1, $1F) 'write a byte to control

register one (enable all axis, 100Hz update rate)

Calibrate

last_ticks := cnt

repeat 'Repeat indefinitely

term.tx(1) 'Set Terminal data at top of screen

WaitForDataReady

Read_MultiB(OUT_X_INC) 'Read out multiple bytes starting

at "output X low byte"

x := x - cx 'subtract calibration out

y := y - cy

z := z - cz

' at 250 dps setting, 1 unit = 0.00875 degrees,

' that means about 114.28 units = 1 degree

' this gets us close

x := x / 114

y := y / 114

z := z / 114

RawXYZ 'Print the Raw data output of X,Y and Z

PUB RawXYZ

''Display Raw X,Y,Z data

term.str(string("RAW X ",11))

term.dec(x)

term.str(string(13, "RAW Y ",11))

term.dec(y)

term.str(string(13, "RAW Z ",11))

term.dec(z)

Modern Robotics with OpenCV

58 http://www.sciencepublishinggroup.com

PUB Calibrate

cx := 0

cy := 0

cz := 0

repeat 25

WaitForDataReady

Read_MultiB(OUT_X_INC) ' read the 3 axis values and

accumulate

cx += x

cy += y

cz += z

cx /= 25 ' calculate the average

cy /= 25

cz /= 25

PUB WaitForDataReady | status

repeat

status := Read_1B(STATUS_REG) ' read the ZYXZDA bit

of the status register (looping until the bit is on)

if (status & $08) == $08

quit

PUB Wrt_1B(SUB1, data)

''Write single byte to Gyroscope.

start

send(WRITE) 'device address as write

command

'slave ACK

send(SUB1) 'SUB address = Register MSB 1 =

reg address auto increment

'slave ACK

send(data) 'data you want to send

'slave ACK

stop

PUB Wrt_MultiB(SUB2, data, data2)

''Write multiple bytes to Gyroscope.

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 59

start

send(WRITE) 'device address as write command

'slave ACK

send(SUB2) 'SUB address = Register MSB 1 = reg address

auto increment

'slave ACK

send(data) 'data you want to send

'slave ACK

send(data2) 'data you want to send

'slave ACK

stop

PUB Read_1B(SUB3) | rxd

''Read single byte from Gyroscope

start

send(WRITE) 'device address as write command

'slave ACK

send(SUB3) 'SUB address = Register MSB 1 = reg

address auto increment

'slave ACK

stop

start 'SR condition

send(READ) 'device address as read command

'slave ACK

rxd := receive(false) 'recieve the byte and put in

variable rxd

stop

result := rxd

PUB Read_MultiB(SUB3)

''Read multiple bytes from Gyroscope

start

send(WRITE) 'device address as write command

'slave ACK

send(SUB3) 'SUB address = Register MSB 1 = reg

address auto increment

'slave ACK

stop

Modern Robotics with OpenCV

60 http://www.sciencepublishinggroup.com

start 'SR condition

send(READ) 'device address as read command

'slave ACK

multiBYTE[x_idx] := (receive(true)) | (receive(true)) << 8

'Receives high and low bytes of Raw data

multiBYTE[y_idx] := (receive(true)) | (receive(true)) << 8

multiBYTE[z_idx] := (receive(true)) | (receive(false)) << 8

stop

x := ~~multiBYTE[x_idx]

y := ~~multiBYTE[y_idx]

z := ~~multiBYTE[z_idx]

PRI send(value) ' I²C Send data - 4 Stack Longs

value := ((!value) >< 8)

repeat 8

dira[SDApin] := value

dira[SCLpin] := false

dira[SCLpin] := true

value >>= 1

dira[SDApin] := false

dira[SCLpin] := false

result := not(ina[SDApin])

dira[SCLpin] := true

dira[SDApin] := true

PRI receive(aknowledge) ' I²C receive data - 4 Stack Longs

dira[SDApin] := false

repeat 8

result <<= 1

dira[SCLpin] := false

result |= ina[SDApin]

dira[SCLpin] := true

dira[SDApin] := (aknowledge)

dira[SCLpin] := false

dira[SCLpin] := true

dira[SDApin] := true

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 61

PRI start ' 3 Stack Longs

outa[SDApin] := false

outa[SCLpin] := false

dira[SDApin] := true

dira[SCLpin] := true

PRI stop ' 3 Stack Longs

dira[SCLpin] := false

dira[SDApin] := false

PID Controller for the Robot

A PID controller is used to make a quantity (like position) reach a target

value (a target position). The first thing a PID controller does is to calculate the

error e(t). The PID controller algorithm involves three separate constant

parameters, and is accordingly sometimes called three-term control: the

proportional, the integral and derivative values, denoted P, I, and D. Simply put,

these values can be interpreted in terms of time: P depends on the present error,

I on the accumulation of past errors, and D is a prediction of future errors, based

on current rate of change. The weighted sum of these three actions is used to

adjust the process via a control element such as the position of a motor. The

controller attempts to minimize the error by adjusting (an Output). The model

of PID Controller shown in fig. 3.11:

Figure 3.12 General PID Controller.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Derivative

Modern Robotics with OpenCV

62 http://www.sciencepublishinggroup.com

The output of a PID controller, equal to the control input to the system, in the

time-domain is as follows:

 (3.1)

In Propeller microcontroller, we can use Propeller Object Exchange named A

quadrature encoder and PID controller driver that runs in one cog. The code has

been fully optimized with a super simple spin interface for maximum speed and

is also fully commented. It provides full support for getting the quadrature

encoder's current position and position delta in ticks and setting the quadrature

encoders current speed in ticks per second through PID control through a

standard DC motor.

Exercises

1) Write a motor speed controller using PID.

2) Write a program for fire fighter robot using flame sensor, distance sensor

and compass to follow the side of the wall.

References

[1] Crustcrawler.com.

[2] www.parallax.com.

http://www.parallax.com/

	wbudiharto@binus.edu-9.11 43
	wbudiharto@binus.edu-9.11 44
	wbudiharto@binus.edu-9.11 45
	wbudiharto@binus.edu-9.11 46
	wbudiharto@binus.edu-9.11 47
	wbudiharto@binus.edu-9.11 48
	wbudiharto@binus.edu-9.11 49
	wbudiharto@binus.edu-9.11 50
	wbudiharto@binus.edu-9.11 51
	wbudiharto@binus.edu-9.11 52
	wbudiharto@binus.edu-9.11 53
	wbudiharto@binus.edu-9.11 54
	wbudiharto@binus.edu-9.11 55
	wbudiharto@binus.edu-9.11 56
	wbudiharto@binus.edu-9.11 57
	wbudiharto@binus.edu-9.11 58
	wbudiharto@binus.edu-9.11 59
	wbudiharto@binus.edu-9.11 60
	wbudiharto@binus.edu-9.11 61
	wbudiharto@binus.edu-9.11 62
	wbudiharto@binus.edu-9.11 63
	wbudiharto@binus.edu-9.11 64
	wbudiharto@binus.edu-9.11 65
	wbudiharto@binus.edu-9.11 66
	wbudiharto@binus.edu-9.11 67
	wbudiharto@binus.edu-9.11 68
	wbudiharto@binus.edu-9.11 69
	wbudiharto@binus.edu-9.11 70
	wbudiharto@binus.edu-9.11 71
	wbudiharto@binus.edu-9.11 72

