

Chapter 10

Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 165

On successful completion of this course, students will be able to:

 Explain how the humanoid robot works.

 Develop vision-based humanoid robot.

 Explain object detection using keypoints and feature matching.

Introduction

Modern Humanoid Robot in uncontrolled environments needs to be based on

vision and versatile. This paper propose a method for object measurement and

ball tracking method using Kalman Filter for Humanoid Soccer, because the

ability to accurately track a ball is one of the important features for processing

high-definition image. A color-based object detection is used for detecting a ball

while PID controller is used for controlling pan tilt camera system. We also

modify the robot’s controller CM-510 in order able to communicate efficiently

using main controller.

Humanoid Robot

The humanoid robot is popular nowadays for the entertainment or contests

such as RoboCup Humanoid League. The important features of humanoid

soccer, such as accuracy, robustness, efficient determination and tracking of ball

size and location; has proven to be a challenging subset of this task and the

focus of much research. With the evolution of robotics hardware and subsequent

advances in processor performance in recent years, the temporal and spatial

complexity of feature extraction algorithms to solve this task has grown (Ha et

al, 2011).

In the case of Humanoid soccer, vision systems are one of the main sources

for environment interpretation. Many problems have to be solved before having

a fully featured soccer player. First of all, the robot has to get information from

the environment, mainly using the camera. It must detect the ball, goals, lines

and the other robots. Having this information, the robot has to self-localize and

decide the next action: move, kick, search another object, etc. The robot must

perform all these tasks very fast in order to be reactive enough to be competitive

in a soccer match. It makes no sense within this environment to have a good

localization method if that takes several seconds to compute the robot position

Modern Robotics with OpenCV

166 http://www.sciencepublishinggroup.com

or to decide the next movement in few seconds based on the old perceptions

(Martin et al, 2011). At the same time many other topics like human-machine

interaction, robot cooperation and mission and behavior control give humanoid

robot soccer a higher level of complexity like no any other robots (Blanes et al,

2011). So the high speed processor with efficient algorithms is needed for this

issue.

One of the performance factors of a humanoid soccer is that it is highly

dependent on its tracking ball and motion ability. The vision module collects

information that will be the input for the reasoning module that involves the

development of behaviour control. Complexity of humanoid soccer makes

necessary playing with the development of complex behaviours, for example

situations of coordination or differ rent role assignment during the match. There

are many types of behaviour control, each with advantages and disadvantages:

reactive control is the simplest way to make the robot play, but do not permit

more elaborated strategies as explained for example in (Behnke, 2001). On the

other side, behaviour-based control are more complex but more difficult to

implement, and enables in general the possibility high-level behaviour control,

useful for showing very good performances. Intelligent tracking algorithm for

state estimation using Kalman filter has been successfully developed (Noh et al,

2007), and we want to implement that method for ball tracking for humanoid

soccer robot.

We propose architecture of low cost humanoid soccer robot compared with

the well known humanoid robots for education such as DarwIn-OP and NAO

and test its ability for image processing to measure distance of the ball and track

a ball using color-based object detection method, the robot will kick the ball

after getting the nearest position between the robot and the ball. The Kalman

filter is used here to estimate state variable of a ball that is excited by random

disturbances and measurement noise. It has good results in practice due to

optimality and structure and convenient form for online real time processing.

For future robotics, we will familiar with term of robot ethics. Robot ethics

is a growing interdisciplinary research effort roughly in the intersection of

applied ethics and robotics with the aim of understanding the ethical

implications and consequences of robotic technology. Swarm robotics is a new

approach to the coordination of multirobot systems which consist of large

numbers of mostly simple physical robots. It is supposed that a desired

collective behavior emerges from the interactions between the robots and

interactions of robots with the environment. Swarm robotics systems are

http://en.wikipedia.org/w/index.php?title=Multirobot_system&action=edit&redlink=1
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Collective_behavior

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 167

characterized by decentralized control, limited communication between robots,

and use of local information and emergence of global behavior.

The Architecture of the Humanoid Robot

Humanoid soccer robots design based on the vision involves the need to

obtain a mechanical structure with a human appearance, in order to operate into

a human real world. Another important feature for modern humanoid robot is

the ability to process tasks especially for computer vision. We propose an

embedded system that able to handle high speed image processing, so we use

main controller based on the ARM7 Processor. Webcam and servo controller

are used to track a ball, and the output of the main controller will communicate

with the CM510 controller to control the actuators and sensors of the robot as

shown in figure. 10.1.

Figure 10.1 Architecture of high speed system for Humanoid Soccer Robot.

The main controller uses Odroid X2 that consist of Cortext-A9 1.7 GHz and

sufficient memory and ports to be connected with other devices as shown in fig.

10.2. The specification of the Odroid X2:

 Exynos4412 Quad-core ARM Cortex-A9 1.7GHz.

 2GByte Memory.

 6 x High speed USB2.0 Host port.

 10/100Mbps Ethernet with RJ-45 LAN Jack.

Modern Robotics with OpenCV

168 http://www.sciencepublishinggroup.com

Figure 10.2 Odroid X2 for processing the images from webcam

(hardkernel.com, 2013).

The Firmware of the robot to control the servos is modified from the original

one named Robotis Firmware due to the limitation for sending a motion

command by serial interface based on Peter Lanius works published in google

code (Lanius, 2013). This firmware instead using RoboTask to program the

robot controlling its movement but it directly program the AVR Microcontroller

inside the CM-510 controller using C language. Using this alternative can

reduce the size of the program from originally 170KB to 70KB in the memory.

By this firmware, the robot can be connected directly to Ball Tracking System

using USB Serial Interface to command its motion. Based on this framework, it

opens an opportunity to built Real Time Operating System for the robot. The

robot’s control starts with initialization routines of CM-510 controller then

move to Wait for Start Button state. In this state, it waits the button to be

pressed to change the start_button_pressed variable from FALSE to TRUE then

move to Dynamixel and Gyro Initialization which send broadcast ping to every

Dynamixel servo connected to CM-510. When one or more servos do not

respond of the ping then CM-510 will send a message mentioning the failure of

a servo to serial terminal. Gyro Initialization does gyro calibration in the robot

to get center reference and sends the value to serial terminal. Next state is

Waiting Motion Command that waits the command through serial interface,

from terminal or tracking module, then check if the command is valid or not. If

it does not valid then the state will repeat to Wait Motion Command or continue

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 169

to next Execute Motion Command state when the command is valid. Execute

Motion Command executes a motion command to move a servos based on

defined Look-Up-Table (LUT).

For example, when a command says WALKING then the state looks servo’s

values for WALKING stored in the LUT then sends it to Dynamixel servo

through serial bus. When a motion is completed then it move to preceding state

but if there is an emergency which is determined by pressing start button when

the servos is moving compared to command input which does not receive stop

command, then it move to Dynamixel Torque Disable to disable all the servo’s

torque to save from damage and move to Wait for Start Button state. The

improved system to accept commands from the main controller is shown as the

state machine in figure 10.3.

Figure 10.3 State machine of the robot’s controller.

Modern Robotics with OpenCV

170 http://www.sciencepublishinggroup.com

Ball Distance Estimation and Tracking Algorithm

Computer vision is one of the most challenging applications in sensor

systems since the signal is complex from spatial and logical point of view. An

active camera tracking system for humanoid robot soccer tracks an object of

interest (ball) automatically with a pan-tilt camera. We use OpenCV for

converting to HSV (Hue Saturation-Value), extract Hue & Saturation and create

a mask matching only the selected range of hue value (Szeliski, 2010).

To have a good estimation, the object must be in the centre of the image, i.e.

it must be tracked. Once there, the distance and orientation are calculated,

according to the neck’s origin position, the current neck‘s servomotors position

and the position of the camera in respect to the origin resulting of the design

(Maggi, 2007). We considered method for distance estimation of the ball by

centering the ball on the camera image, using the head tilt angle to estimate the

distance to the ball.

Region growing algorithms are also used to locate the ball color blobs that

have been identified by region growing and are useful and robust source for

further image processing, as demonstrated by (Ghanai, 2009). The ball will be

tracked based on the color and webcam will track to adjust the position of the

ball to the center of the screen based on the Algorithm 1.

Algorithm 1: Ball tracking and Kick the ball

Get input image from the camera

Convert to HSV (Hue-Saturation-Value)

Extract Hue & Saturation

Create a mask matching only for the selected range of hue

Create a mask matching only for the selected saturation levels.

Find the position (moment) of the selected regions.

If ball detected then

Estimate distance of the ball

Object tracking using Kalman Filter

centering the position of the ball

Move robot to the ball

If ball at the nearest position with the robot then

Kick the ball

endif

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 171

endif

The estimated position , from Kalman filter is used as an input to PID

controller. We use a PID controller to calculate an error value as the difference

between a measured (input) and a desired set point to control high speed HS-85

servos. The controller attempts to minimize the error by adjusting (an Output).

The model of PID Controller is shown in figure 10. 4:

Figure 10.4 General PID Controller.

The output of a PID controller, equal to the control input to the system, in the

time-domain is as follows:

 (10.1)

A Framework of Multiple Moving Obstacles Avoidance

Strategy

Because we want a general model for humanoid service robot, we propose a

framework for multiple moving obstacles avoidance strategy using stereo vision.

A multiple moving obstacle avoidance strategy is an important framework to

develop humanoid service robot in dynamic environment. There are two mains

actors on multiple moving obstacles avoidance system; the Robot itself and the

Range Finder. The Robot interacts with this system to detect customer and

determine moving obstacles. Both processes to detect customer and determine

moving obstacles include a process of face recognition as explained before.

After the obstacles are determined, The Range Finder (camera and its system)

will calculate and estimate the distance of those moving obstacles and estimate

Modern Robotics with OpenCV

172 http://www.sciencepublishinggroup.com

the direction of moving obstacles. Direction estimation of obstacles will be used

to determine optimal maneuver of the Robot to avoid those obstacles. The

framework is shown in figure 10.5:

Figure 10.5 The use case diagram for our multiple moving obstacles avoidance

strategy using stereo vision.

Visual perception is the ability to interpret the information and surroundings

from the effects of visible light reaching the eye. The resulting perception is

also known as eyesight, sight, or vision. Visual-perception-based of service

robot for customer identification is an interpretation process to direct a service

robot to a destination of identified customer based on face recognition system

and computer vision. After interpretation of images from camera done, then it is

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 173

used as information for the robot and to decide actions based on the task given

by a developer. The basic of visual–perception model for a humanoid service

robot is shown in figure 10.6:

Figure 10.6 Visual-perception model for vision-based humanoid robot. After

interpretation process, the information used for navigating the robot or deciding

actions for robot, such as direct a robot to customer’s position.

Experiments

Object detection and segmentation is the most important and challenging

fundamental task of computer vision. It is a critical part in many applications

such as image search, image auto-annotation and scene understanding. However

it is still an open problem due to the complexity of object classes and images.

The easiest way to detect and segment an object from an image is the color

based methods. The colors in the object and the background should have a

significant color difference in order to segment objects successfully using color

based methods.

We need a webcam to try detecting a ball using this program demo. Create an

application using Visual C++ 2010 Express edition and OpenCV. Configure the

properties and write a program below:

ColorBased.cpp:

//Demo Program of Color-Based Detection for a Ball

//Copyright Dr. Widodo Budiharto 2014

#include "stdafx.h"

#include <cv.h>

#include <highgui.h>

// threshold image HSV

Modern Robotics with OpenCV

174 http://www.sciencepublishinggroup.com

IplImage* GetThresholdedImage(IplImage* imgHSV){

IplImage*

imgThresh=cvCreateImage(cvGetSize(imgHSV),IPL_DEPTH_8U, 1);

cvInRangeS(imgHSV, cvScalar(170,160,60), cvScalar(180,256,256),

imgThresh);

return imgThresh;

}

int main(){

CvCapture* capture =0;

capture = cvCaptureFromCAM(0);

//set width and height

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480);

if(!capture){

printf("Capture failure\n");

return -1;

}

IplImage* frame=0;

cvNamedWindow("Video");

cvNamedWindow("Ball");

//iterasi frame

while(true){

frame = cvQueryFrame(capture);

if(!frame) break;

frame=cvCloneImage(frame);

//smooth the original image using Gaussian kernel

cvSmooth(frame, frame, CV_GAUSSIAN,3,3);

IplImage* imgHSV = cvCreateImage(cvGetSize(frame), IPL_DEPTH_8U,

3);

//ubah formwat color dari BGR ke HSV

cvCvtColor(frame, imgHSV, CV_BGR2HSV);

IplImage* imgThresh = GetThresholdedImage(imgHSV);

//smooth the binary image using Gaussian kernel

cvSmooth(imgThresh, imgThresh, CV_GAUSSIAN,3,3);

cvShowImage("Ball", imgThresh);

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 175

cvShowImage("Video", frame);

//bersihkan images

cvReleaseImage(&imgHSV);

cvReleaseImage(&imgThresh);

cvReleaseImage(&frame);

//tunggu 50sec

int c = cvWaitKey(10);

//If 'ESC' is pressed, break the loop

if((char)c==27) break;

}

cvDestroyAllWindows() ;

cvReleaseCapture(&capture);

return 0;

}

The approach proposed in this paper was implemented and tested on a

humanoid Robot named Humanoid Robot Soccer Ver 2.0 based on Bioloid

Premium Robot. By modify the robot’s controller (CM-510) in order to accept

serial command from the main controller, this system able to communicate

efficiently.

Modern Robotics with OpenCV

176 http://www.sciencepublishinggroup.com

Figure 10.7 The original image (a), the mask (a) and ball detected and tracked using

Kalman Filters in the green circle (b).

When a ball is in front of the robot and has been detected, the robot tries to

track the ball, and if the ball at the nearest position with the robot, robot will

kick it as shown in figure 10.8.

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 177

Figure 10.8 The robot tracks and kicks a ball when at the correct position [13].

Object Detection Using Keypoint and Feature Matching

The color-based object detector works well only for single-colored objects

and can be fooled by different object of the same color, but color-based object

detection is very fast. If you want to design the vision system for intelligent

robot, you should obviously not rely on color for detecting object, because you

don’t know what the working environment of your robot will look like. So, we

use Machine Learning and Object detection based on keypoints. In this method,

the computer “learn” the characteristics of the whole object template and look

Modern Robotics with OpenCV

178 http://www.sciencepublishinggroup.com

for similar instances in other images. SIFT (Scale Invariant Feature Transform)

is a famous algorithm for keypoint extraction and description) keypoints, and

the matching descriptors between the two images.

Keypoint descriptors are also often called features. Object detection using

SIFT is scale and rotation invariant. The algorithm will detect object that have

the same appearance but a bigger or smaller size in the test image compared

with the training images. Use the FlannBasedMatcher interface in order to

perform a quick and efficient matching by using the FLANN (Fast Approximate

Nearest Neighbor Search Library). SURF is a class for extracting Speeded Up

Robust Features from an image. In short, SURF adds a lot of features to

improve the speed in every step. OpenCV provides SURF functionalities just

like SIFT. You initiate a SURF object with some optional conditions like

64/128-dim descriptors, Upright/Normal SURF, etc.

The features are invariant to image scaling, translation, and rotation, and

partially in-variant to illumination changes and affine or 3D projection. Features

are efficiently detected through a staged filtering approach that identifies stable

points in scale space [14]. The first stage of keypoint detection is to identify

locations and scales assigned under differing views of the same object.

Detecting locations that are invariant to scale change of the image can be

accomplished by searching for stable features across all possible scales, using a

continuous function of scale known as scale space. It has been shown by

Koenderink and Lindeberg that under a variety of reasonable assumptions the

only possible scale-space kernel is the Gaussian function. Therefore, the scale

space of an image is defined as a function, L(x, y, σ), that is produced from the

convolution of a variable-scale Gaussian, G(x, y, σ), with an input image, I(x, y):

),(),,(),,(yxIyxGyxL . (10.2)

Where * is the convolution operation in x and y, and:

222 2)(2)21(),,(yxeyxG

To efficiently detect stable keypoint locations in scale space, we use scale-

space extrema in the difference-of-Gaussian function convolved with the image:

)),,((),,(

),()],,(),,([),,(

yxLkyxL

yxIyxGkyxGyxD

http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html?highlight=flannbasedmatcher#flannbasedmatcher
http://docs.opencv.org/modules/flann/doc/flann_fast_approximate_nearest_neighbor_search.html

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 179

Figure 10.9 Gaussian scale-space pyramid create an interval in the difference-of-

Gaussian pyramid.

Laplacian of Gaussian acts as a blob detector which detects blobs in various

sizes due to change in σ. In short, σ acts as a scaling parameter. We can find the

local maxima across the scale and space which gives us a list of (x,y,σ) values

which means there is a potential keypoint at (x,y) at σ scale. But this LoG is a

little costly, so SIFT algorithm uses Difference of Gaussians which is an

approximation of LoG. Difference of Gaussian is obtained as the difference of

Gaussian blurring of an image with two different σ, let it be σ and kσ. This

process is done for different octaves of the image in Gaussian Pyramid. It is

represented in below image. Once this DoG are found, images are searched for

local extrema over scale and space. In order to detect the local maxima and

minima of G(x, y, σ), each sample point is compared to its eight neighbors in

the current image and nine neighbors in the scale above and below:

Modern Robotics with OpenCV

180 http://www.sciencepublishinggroup.com

Figure 10.10 Maxima and minima detection in the difference-of-Gaussian image.

In 2004, D.Lowe, form University of British Columbia, [14] proposed how to

extracting keypoints and computing descriptors using the Scale Invariant

Feature Transform (SIFT). Keypoints are detected using scale-space extrema in

difference-of-Gaussian function D and efficient to compute. Here is a sample

program using a template file and webcam for SIFT keypoint detector using

FLANN.

FLANN.cpp:

#include "stdafx.h"

#include <iostream>

#include <conio.h>

#include <stdio.h>

#include <cv.h>

#include <highgui.h>

#include "opencv2/core/core.hpp"

#include "opencv2/features2d/features2d.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/nonfree/features2d.hpp"

using namespace std;

using namespace cv;

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 181

int main()

{

int i=0;

CvRect in_box,output_box;

Mat train=imread("template3.jpg"), train_g;

cvtColor(train,train_g,CV_BGR2GRAY);

//detect SIFT keypoints

vector<KeyPoint> train_kp;

Mat train_desc;

SiftFeatureDetector featureDetector;

featureDetector.detect(train_g,train_kp);

SiftDescriptorExtractor featureExtractor;

featureExtractor.compute(train_g, train_kp, train_desc);

//FLANN based descriptor matcher object

FlannBasedMatcher matcher;

vector<Mat> train_desc_collection (1,train_desc);

matcher.add(train_desc_collection);

matcher.train();

//VideoCapture object

VideoCapture cap(0);

unsigned int frame_count=0;

while (char(waitKey(1)) !='q') {

double to=getTickCount();

Mat test, test_g;

cap>>test;

if (test.empty())

continue;

cvtColor(test,test_g,CV_BGR2GRAY);

//detect SIFT keypoint and extract descriptors in the

test image

vector<KeyPoint> test_kp;

Mat test_desc;

featureDetector.detect(test_g, test_kp);

featureExtractor.compute(test_g,test_kp,test_desc);

//match train and test descriptors, getting 2 nearest

neighbors for all test descriptors

vector<vector<DMatch> > matches;

Modern Robotics with OpenCV

182 http://www.sciencepublishinggroup.com

matcher.knnMatch(test_desc,matches,10);

//filter for good matches according to Lowe's algorithm

vector<DMatch> good_matches;

Mat img_show;

vector<KeyPoint> keypoints_1;

vector<KeyPoint> keypoints_2;

for (i=0;i<matches.size();i++) {

if (matches[i][0].distance <

0.5*matches[i][1].distance)

{

good_matches.push_back(matches[i][0]);

}

}

//-- Localize the object

std::vector<Point2f> obj;

std::vector<Point2f> scene;

drawMatches(test,test_kp, train, train_kp, good_matches,

img_show,Scalar::all(-1), Scalar::all(-

1),vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

Point2f point1;

int average_X=0;int average_Y=0;

if (good_matches.size() >= 4){

for(int i = 0; i < good_matches.size(); i++)

{

//-- Get the keypoints from the good matches

obj.push_back(train_kp[good_matches[i].trainIdx].pt);

scene.push_back(test_kp[good_matches[i].queryIdx].pt);

point1=test_kp[good_matches[i].queryIdx].pt;

average_X+=point1.x; //get the coordinate of x

}

average_X=(average_X)/good_matches.size();

printf("pointx: %d pointy: %d \n",point1.x, point1.y);

cv::rectangle(img_show , cvPoint(average_X-55, point1.y-50) ,

cvPoint(average_X+50, point1.y+50) , Scalar(255, 0, 255),

1);

}

imshow("Matches", img_show);

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 183

cout<<"Frame rate="<<getTickFrequency()/(getTickCount()-

t0)<<endl;

}

return 0;

}

Figure 10.11 Robust Object detector using FLANN based matcher, rectangle line used

to get center position of the object.

References

[1] Adrian Kaehler & Garry Bradksy, Learning OpenCV: Computer Vision in C++

with the OpenCV Library, O'Reilly PUblisher, 2014.

[2] Samarth Brahmbatt, Practical OpenCV, Technology in Action Publisher, 2013.

[3] Daniel bagio et al., Mastering OpenCV with Practical Computer Vision Project,

Packt Publisher, 2012.

	wbudiharto@binus.edu-9.11 173
	wbudiharto@binus.edu-9.11 174
	wbudiharto@binus.edu-9.11 175
	wbudiharto@binus.edu-9.11 176
	wbudiharto@binus.edu-9.11 177
	wbudiharto@binus.edu-9.11 178
	wbudiharto@binus.edu-9.11 179
	wbudiharto@binus.edu-9.11 180
	wbudiharto@binus.edu-9.11 181
	wbudiharto@binus.edu-9.11 182
	wbudiharto@binus.edu-9.11 183
	wbudiharto@binus.edu-9.11 184
	wbudiharto@binus.edu-9.11 185
	wbudiharto@binus.edu-9.11 186
	wbudiharto@binus.edu-9.11 187
	wbudiharto@binus.edu-9.11 188
	wbudiharto@binus.edu-9.11 189
	wbudiharto@binus.edu-9.11 190
	wbudiharto@binus.edu-9.11 191
	wbudiharto@binus.edu-9.11 192
	wbudiharto@binus.edu-9.11 193
	wbudiharto@binus.edu-9.11 194

