This is a book that is essential for Engineers, Architects, and Scientist that work in the field of structural durability.

Life Cycle of CO₂ (LCCO₂) Evaluation and Service Life Prediction of RC Structure Considering Carbonation Degree of Concrete

Han Seung Lee Mohamed Abdel Kader Ismail Sang Hyun Lee Mohd Warid Hussin

Life Cycle of CO₂ (LCCO₂) Evaluation and Service Life Prediction of RC Structure Considering Carbonation Degree of Concrete

Han Seung Lee

Mohamed Abdel Kader Ismail

Sang Hyun Lee

Mohd Warid Hussin

Science Publishing Group

548 Fashion Avenue New York, NY 10018 www.sciencepublishinggroup.com

Published by Science Publishing Group 2015

Copyright © Han Seung Lee 2015 Copyright © Mohamed Abdel Kader Ismail 2015 Copyright © Sang Hyun Lee 2015 Copyright © Mohd Warid Hussin 2015

All rights reserved.

First Edition

ISBN: 978-1-940366-47-0

This work is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/

or send a letter to: Creative Commons 171 Second Street, Suite 300 San Francisco, California 94105 USA

To order additional copies of this book, please contact: Science Publishing Group book@sciencepublishinggroup.com www.sciencepublishinggroup.com

Printed and bound in India

Acknowledgments

This book is based on a study that was carried out at Hanyang University, Erica Campus, Ansan and was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No.2015R1A5A1037548).

Abstract

Life cycle of CO_2 (LCCO₂) evaluation and service life prediction of RC structure considering carbonation degree of concrete.

Building structure standard was modified in KOREA in 2012 in order to activate green development and new technology such as eco-friendly material and high strength concrete to be adopted to building. Because recently concerns about the sustainability of the globe highlight the need of CO_2 reduction and eco-friendly building and each country make and plan to commit the financial obligations of CO_2 emissions. As a result, design should consider using low CO_2 emissions and resource and CO_2 display of products has expanded.

On the other hand, there is still no formalized way in KOREA to display CO_2 emission of concrete that is a main building material. Especially, quantitative evaluating method for it is needed because it can be used as a reference day to decrease CO_2 emission by replacing cement with admixtures in concrete. Because cement emits much CO_2 in the process of making it but admixtures emits CO_2 much smaller than cement. Besides, concrete can absorb CO_2 through carbonation but there is still no reference data in KOREA to consider it.

Concrete carbonation decreases durability of concrete because it causes rebar to corrode. Therefore, quantitative evaluating method for amount of CO_2 absorption through carbonation should be considered under the condition that carbonation does not affect durability of RC structure.

Evaluating service life by carbonation has a limit that it uses an indicator. But that method is a qualitative method and has a limit not to consider carbonation degree. In the case of salt damage, quantitative evaluation method can be possible by measuring chloride ion concentration at the depth of rebar location but in the Abstract

case of carbonation there is still no quantitative evaluation method (evaluation materials, measurement position) and standard yet. Evaluation method by indicator has a qualitative assessment limit that instability color change may happen in the carbonation depth anytime. In addition, carbonation depth measurement method by the indicator has a problem that concrete color does not discolored in early progress of carbonation. Carbonation depth measurement method using an indicator may cause prediction error of service life of RC structure when measurement error by measurers has happened because of ambiguous boundary. Thus, evaluation method by indicator has a qualitative assessment limit that unstable color change may happen in the carbonation depth anytime. Therefore, a quantitative evaluation methods and standards for carbonation are required to overcome this problem.

So, this study proposed a quantitative evaluating method that overcomes the limitation of qualitative evaluation, which is carried out using the naked eye with respect to the color change boundary by spraying indicator. Carbonation depth becomes the basic data for estimating the residual life and durability of RC structures. To achieve this objective, the quantitative change of $Ca(OH)_2$ and $CaCO_3$ for each depth in concrete according to the carbonation process is measured using TG/DTA in order to propose a quantitative method and an evaluation basis. Another goal is to propose evaluating method of CO_2 absorption in the air through carbonation and how to evaluate $LCCO_2$ (emission – absorption of CO_2).

This study is composed of six chapters to evaluate $LCCO_2$ and service life prediction of RC structure considering carbonation degree of concrete and summarized contents of each chapter are as follows:

In chapter 1, necessity and objectives of this study are explained.

In chapter 2, review for carbonation and a quantitative evaluating method is

conducted to complement qualitative evaluating method by indicators.

In chapter 3, correlation between pH value and quantities of $Ca(OH)_2$, $CaCO_3$ is analyzed experimentally by carbonation weeks, concrete depths through accelerated carbonation experiment in order to propose a quantitative evaluating basis. Quantity of $Ca(OH)_2$ is important to predict service life of concrete against carbonation and cement hydration model can predict it quantitatively to any concrete mix. Therefore, validation for cement hydration model is verified by comparing prediction values and measured values of $Ca(OH)_2$.

In chapter 4, prediction model for carbonation based on FEM is used to predict the service life of RC structure. Required input parameters such as initial concentration of $Ca(OH)_2$, diffusion coefficient of CO_2 , reaction velocity constant, CO_2 concentration in the air for FEMA are decided through literature review. The proposed quantitative evaluation basis in chapter 3 is used to evaluate and predict service life.

In chapter 5, CO_2 emission of concrete considering concrete mix and CO_2 absorption through carbonation during service life for unit volume concrete is calculated quantitatively. And then, CO_2 balance (emission-absorption of CO_2) and $LCCO_2$ is evaluated quantitatively to a real building.

In chapter 6, conclusions of this study are summarized and further study is proposed.

- 1. Proposal of a quantitative evaluation basis for carbonation depth
- a) Carbonation depth is determined. Approximately 60% level of the initial concentration of $Ca(OH)_2$ and the point where the ratio of $CaCO_3$, $Ca(OH)_2$ 1:3 is matched the colored point by indicator.
- b) C_0 is the mass loss rate of sample using TG/DTA after 3 months hydration and the value is 1.0% and it is expected to the lowest because the sample is

Abstract

not carbonated yet. C_{max} is the mass loss rate of sample using TG/DTA when the value does not rise up more in a chamber of 100% CO₂ gas in the air so the sample is expected to be fully carbonated and the value is 27.15%. pH value at that time is 10.6 and this value is expected sample to be fully carbonated experimentally.

- c) Proposed quantitative evaluation method considering carbonation degree for carbonation can evaluate even in 1 week carbonation time even though method by indicator cannot evaluate because of uncolored concrete. Carbonation degree with water to cement ratio of 0.45, 0.55, 0.65 is evaluated $D_{c45} = 23.3\%$, $D_{c55} = 64.8\%$, $D_{c65} = 82.1\%$ in 26 carbonation weeks at 5% of CO₂ concentration.
- 2. Prediction of service life to all mixtures of concrete using carbonation degree
 - a) Hydration model is valid to estimate the amount of Ca(OH)₂ after comparing experimental value and predicted value.
 - b) Predicted value using a point where the concentration of Ca(OH)₂ is 60% value shows similar existing result after comparing exiting predicted model.
 - c) Prediction of service life for carbonation to all mixtures of concrete is possible by the result of FEMA using a hydration model and carbonation degree.
- 3. Proposing of evaluation method for concrete LCCO₂ by carbonation degree
 - a) In terms of CO₂ reduction, evaluation method of LCCO₂ and CO₂ balance for concrete with proposed carbonation can be used for determining the mix proportion of concrete and service life of structure.

This study is a limit that cannot be used as the method for quantitative

evaluation of concrete carbonation, because it is based on only the experimental result for water to cement ratio of 0.45, 0.55 and 0.65 with ordinary Portland cement. In future, an additional investigation for the concrete with fly ash and blast furnace slag will be needed.

Contents

Abs	Abstract III				
Cha	apter 1	Introduction	1		
1.1	Backg	ground and Need of Research	3		
	1.1.1	Structural Standard Revision in Korea, 2012	3		
	1.1.2	A Qualitative Evaluation Limit of Concrete Carbonation Depth	4		
	1.1.3	CO ₂ Balance Evaluation of Concrete	7		
1.2	Objec	tives of Research	9		
1.3	Confi	guration and Contents of Research	. 10		
Cha	apter 2	Literature Review	. 13		
2.1	Outlin	ne	. 15		
2.2	Conce	rete Carbonation	. 15		
	2.2.1	Definition and Risk of a Concrete Carbonation	. 15		
	2.2.2	Durability Degradation Mechanisms of a Concrete Carbonation	. 16		
	2.2.3	Changes in the Physical Properties of Concrete Subjected to Carbonation	. 18		
2.3	A Qua CaCO	antitative Evaluation Method of Ca(OH) ₂ , b ₃ Using a TG/DTA	. 19		
2.4	Carbo	nation Degree	. 22		
2.5	Predic	ction Models of Concrete Carbonation	. 23		
	2.5.1	Experimental Models	. 23		
	2.5.2	Carbonation Prediction Models Using a Fick's Diffusion Law	. 25		
	2.5.3	Integrated Carbonation Prediction Model Considering the Hydration	. 28		
	2.5.4	Carbonation Prediction Model Using a FEM Analysis	. 30		
2.6	Relati CaCO	conship Between pH Value and the Amount of $Ca(OH)_2$ and	. 33		

2.7	Sumn	nary	. 35
Cha	apter 3	Evaluation of Concrete Carbonation Degree Using a TG/DTA	. 37
3.1	Outlin	1e	. 39
3.2	Ceme	nt Hydration Model	. 39
	3.2.1	Prediction of Hydration Products	. 40
	3.2.2	Prediction of Porosity Using a Cement Hydration Model	. 45
3.3	Quan Hydra	titative Evaluation Experiments of Ca(OH) ₂ According to tion Time in Order to Verify Cement Hydration Model	. 48
	3.3.1	Overview of Experiments	. 48
	3.3.2	Cast and Curing Method of Test Specimens	. 48
	3.3.3	Measurement Items and Method	. 50
	3.3.4	Experimental Results and Analysis	. 51
	3.3.5	Comparison Between Quantitative Prediction and Experimental Result of Ca(OH) ₂	. 51
3.4	Quan CaCO	titative Measurement of Ca(OH) ₂ and ₃ According to Carbonation	. 55
	3.4.1	Outline	. 55
	3.4.2	Cast and Curing Method of Test Specimens	. 56
	3.4.3	Accelerated Carbonation Test Method of Concrete and Mortar	. 56
	3.4.4	Carbonation Depth Measurements by Phenolphthalein Indicator.	. 56
	3.4.5	Experimental Results and Analysis	. 58
3.5	Evaluation of Concrete Carbonation Degree		. 66
	3.5.1	C_o and C_{max} Evaluation of the Carbonation Degree	. 66
	3.5.2	Evaluation of Carbonation Degree	. 67
3.6	Propo Carbo	sal of a Quantitative Evaluation Standard for nation Depth of Concrete	. 69
3.7	Sumn	nary	. 70

Chapter 4		Prediction of the Service Life of RC Structures Considering Concrete Carbonation	.71
4.1	Outlin	ne	. 73
4.2	Conci	rete Carbonation Model Using a FEMA	. 73
	4.2.1	A Diffusion Equation of CO ₂ in Concrete Based on the Chemical Reaction	. 73
	4.2.2	The Progress of Carbonation Based on the Chemical Reaction	. 75
	4.2.3	Boundary Conditions	. 76
	4.2.4	Approximation of the Equation by a Differential Equation	. 77
4.3	Dedu	ction of Input Parameters for FEMA Through Literature Review	. 78
	4.3.1	Outline	. 78
	4.3.2	Diffusion Coefficient of CO ₂ in Concrete	. 78
	4.3.3	Reaction Rate Constant Between Ca(OH) ₂ and CO ₂	. 81
	4.3.4	Concentration of Carbon Dioxide in the Atmosphere	. 82
4.4	Prediction for Concrete Carbonation Progress Using FEMA		. 83
	4.4.1	Analysis Outline	. 83
	4.4.2	Prediction of Concrete Carbonation Depth with W/C Using FEMA	. 84
4.5	Sumn	nary	. 89
Cha	apter 5	LCCO ₂ Assessment of RC Structures Considering Concrete Carbonation Degree	. 91
5.1	Outlin	ne	. 93
5.2	Defin	ition and Evaluation of CO ₂ Balance of Concrete	. 93
5.3	Calcu	lation of CO ₂ Emissions and Absorption of Concrete	. 93
	5.3.1	Estimation Outline of CO ₂ Emissions Arising from the Manufacture of Concrete	. 93
	5.3.2	CO ₂ Absorption Calculation by Concrete Carbonation	. 94
	5.3.3	CO ₂ Emissions-Absorption Evaluation Methodology Considering Concrete Production and the Use	
		Period of Concrete	. 99

Contents

5.4	Case Study: Evaluation of the CO ₂ Balance of an Apartment Building in South Korea During Its Service Life	
	5.4.1	Overview of the Apartment Building
	5.4.2	Calculating CO ₂ Emission from the Concrete Used in the Apartment Construction
	5.4.3	Calculating CO ₂ Absorption of Concrete Used in the Apartment During Its 20-years' Service Life
	5.4.4	Evaluation of CO ₂ Balance of Concrete107
5.5	Review of the Method to Improve the CO ₂ Balance of Concrete Considering Service Life of RC Structure During Century 108	
	5.5.1	Reduction of CO ₂ Emission of Concrete by Extending the Service Life of the Apartment Building
	5.5.2	Reduction in CO ₂ Emission of Concrete by Using Blended Cement in Concrete111
	5.5.3	Increase in CO ₂ Absorption of Concrete by Extending the Service Life of the Apartment Building
	5.5.4	Increase in CO ₂ Absorption of Concrete by Recycling Waste Concrete After Deconstruction of RC Structure
5.6	Revie Propo	ew Summary: Improving Effect of LCCO ₂ with used Methods
5.7	Sumr	nary
5.8	Conc	lusions
Ref	erence	5