## Chapter 8

## Handling Research Data with Inferential Statistics

8<br>\title{ Handling Research Data with Inferential Statistics }<br>Felix Kutsanedzie ${ }^{1}$; Sylvester Achio ${ }^{1}$; Ofori<br>Victoria ${ }^{2}$<br>${ }^{1}$ Accra Polytechnic, Accra, Ghana<br>${ }^{2}$ Agricultural Engineering Department, KNUST, Ghana


#### Abstract

Inferential statistics just like descriptive statistics has various tools under it which have their peculiar uses as regard data processing. Inferential statistical tools are used for making inferences from samples about the population from which they are selected. It is the field of statistics that has statistical tools for estimating, predicting and making decisions about population and testing hypotheses. The analytical tools within this field of statistics are not well understood and also applied by some researchers, would-be researchers as well as students. This chapter explains the various statistical tools thoroughly.


## Keywords

Inferential, Research, Estimation, Sample, Population, Analysis

### 8.1 Introduction

With descriptive statistics it is required that all the variables considered are known before a dataset can be described with a descriptive tool. However in the case of inferential statistics, not all the variables are known. Inferential statistics involves taking a representative sample from a population to make inferences from it about the sample because it would be difficult to study all members or elements of a population. Inferential statistics is a statistical method used to test hypotheses that relate to the relationship between two variables. Descriptive statistics can be used to describe the relationships based on the data pattern or trend but inferential statistics provide a more rigorous prove as to whether there exist a relationship between two variables. Inferential statistics are used in the case of hypothesis testing and tests such as z-test, t-test, Analysis of Variance (ANOVA) and chi-square test.

### 8.2 T-test

It is used to test the difference between two groups that are continuous variables. For instance, testing the differences between the weights of individuals based on their ages i.e. testing whether there is weight decrease or increase as an individual ages. The equation for the t -test to use depends on whether the researcher is doing an independent samples $t$-test - comparing two different groups; dependent samples $t$-test (paired $t$-test) - comparing two same groups on two different periods of time or different groups matched on an important variable. There is also the one sample t-test, which is used when the researcher wants to test the group scores of a population with a known mean. It must also be stated that the equation used would also vary when doing the independent sample t-test based on the whether the two groups have the same
sample size or not. The t-test is used to handle a sample size of 30 and below which is usually referred to as small sample size. The t-test is preferred when the sample size is 30 and the standard deviation of the population is unknown.

The equation for a single (one) sample t-test is given as:

$$
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}
$$

where $\bar{x}=$ sample mean of the group, $\mu=$ population mean of the group, $s=$ sample standard deviation, $n=$ sample size, $t=$ the $t$ statistics.

Let us take for instance a case where a researcher collects the test scores obtained by 25 students out of 100 marks for a class size of 30 students summarized below:

Table 8.1.1 Scores of Students in a Class.

| $\mathbf{6 1 . 5}$ | $\mathbf{5 4 . 3}$ | $\mathbf{1}$ | $\mathbf{2 8}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 15.1 | 28 | 33 | 60 | 40 |
| 12.5 | 69 | 19 | 31 | 58 |
| 50 | 25 | 91 | 67 | 75 |
| 1.5 | 15 | 40.4 | 33 | 81 |

Assuming the population mean mark for the class is 35 , the $t$-test can be used to test where there sample mean is different from the population mean. In another scenario, a given mean score of 55 , one can test whether there is a difference between this mean score and the sample mean. The $t$-test is used to test whether the mean of a sample differ from a known or a given mean.

From the data given the mean of the sample can be calculated using the formula:

$$
\bar{x}=\frac{\sum x_{1}+x_{2}+x_{3}+\ldots .+x_{n}}{n}
$$

$$
\bar{x}=\frac{\sum 61.5+54.3+1+\ldots .+81}{25}=39.65
$$

where $\bar{x}=$ sample mean
The sample standard deviation is given by the formula:

$$
\begin{gathered}
S=\sqrt{\frac{\sum(\mathrm{x}-\bar{x})^{2}}{n}} \\
S=\sqrt{\frac{\sum(\mathrm{x}-\bar{x})^{2}}{n}}=\sqrt{\frac{\sum\left(\mathrm{x}_{1}-\bar{x}\right)^{2}+\left(\mathrm{x}_{2}-\bar{x}\right)^{2}+\left(\mathrm{x}_{3}-\bar{x}\right)^{2}+\cdots+\left(\mathrm{x}_{\mathrm{n}}-\bar{x}\right)^{2}}{n}} \\
S=\sqrt{\frac{\sum(61.5-39.65)^{2}+(54.3-39.65)^{2}+(1-39.65)^{2}+\cdots+(81-39.65)^{2}}{25}} \\
=25.94
\end{gathered}
$$

where $n=$ sample size $s=$ sample standard deviation.

Therefore

$$
\begin{gathered}
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{39.65-35}{\frac{25.94}{\sqrt{25}}} \\
t_{c a l}=\frac{39.65-35}{\frac{25.94}{\sqrt{25}}}=\frac{4.65}{\frac{25.94}{5}}=\frac{4.65}{5.19}=0.90
\end{gathered}
$$

Thus t-calculated $\left(t_{c a l}\right)=0.90$

$$
\text { where } \mu=\text { population mean }
$$

Now the degree of freedom (df) of the sample which is given by the total number of sample minus one (1) i.e. $d f=n-1=25-1=24$. Once this is done, the degree freedom (df) obtained (24) can be used with the selected level of significance chosen either $5 \%(0.05)$ or $1 \%(0.01)$ to read the $t$-critical value
or tabulated value. The t-calculated and t-critical values are then compared and the decisions taken as follow:


Then the sample mean is statistically significant from the hypothesized mean or assumed population mean.

However if $t_{\text {cal }}<t_{\text {critical or tabulated (at } d f=24, \alpha=0.05 \text { or } 0.01}$.

Then the sample mean is not statistically significant from the hypothesized mean or assumed population mean.

A demonstration of how to read the $t$-critical value from the $t$-test table in figures 8.1.1 and 8.1.2

| $\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \\ \hline \end{array}$ | $\begin{array}{r} t_{50} \\ 0.50 \\ 1.00 \\ \hline \end{array}$ | $\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \end{array}$ | $\begin{array}{r} t_{30} \\ 0.20 \\ 0.40 \\ \hline \end{array}$ | $\begin{array}{r} t_{35} \\ 0.15 \\ 0.30 \end{array}$ | $\begin{array}{r} t_{.80} \\ 0.10 \\ 0.20 \\ \hline \end{array}$ | $\begin{gathered} t_{.85} \\ 0.05 \\ 0.10 \\ \hline \end{gathered}$ | $\begin{array}{r} t_{.975} \\ 0.025 \\ 0.05 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df |  |  |  |  |  |  |  |
| 2 | 0.000 0.000 | 1.000 0.816 | 1.376 1.061 | 1.963 1.386 | 3.078 1.886 | 6.314 2.920 | 12 71 <br> 4.303  |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3. 82 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2. 76 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2. 71 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2. 665 |
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2. 562 |
| 10 | 0.000 | 0.700 | 0.070 | 4.000 | 4.972 | 4.842 | 2.228 |
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 |
| 12 | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 |
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 |
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 |
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 |
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 |
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 |
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 |
| 19 | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 |
| 20 | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 |
| 21 | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 |
| 22 | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 |
| 23 | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 |
| 24 | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 |
| 25 | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 |
| 26 | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 |
| 27 | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 |

Figure 8.1.1 T-table for 0.05 Level of Significance.

| $\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \end{array}$ | $\begin{array}{r} t_{.50} \\ 0.50 \\ 1.00 \\ \hline \end{array}$ | $\begin{array}{r} t_{76} \\ 0.25 \\ 0.50 \\ \hline \end{array}$ | $\begin{array}{r} t_{30} \\ 0.20 \\ 0.40 \end{array}$ | $\begin{gathered} t_{35} \\ 0.15 \\ 0.30 \end{gathered}$ | $\begin{array}{r} t_{.80} \\ 0.10 \\ 0.20 \end{array}$ | $\begin{gathered} t_{.95} \\ 0.05 \\ 0.10 \\ \hline \end{gathered}$ | $\begin{array}{r} t_{\text {s76 }} \\ 0.025 \\ 0.05 \end{array}$ | $\begin{array}{r} t_{s 9} \\ 0.01 \\ 0.02 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df |  |  |  |  |  |  |  |  |
| 1 | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 3.82 |
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6. 665 |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4. 841 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3. 47 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3. 665 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3. 43 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2. 998 |
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2. 996 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 |
| 10 | O.000 | 8700 | 0.079 | +000 | +1972 | +.042 | 2020 | 2.764 |
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 |
| 12 | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 |
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 |
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 |
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 |
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 |
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 |
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 |
| 19 | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 |
| 20 | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 |
| 21 | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 |
| 22 | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 |
| 23 | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 |
| 24 | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 |
| 25 | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 |
| 26 | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 |

Figure 8.1.2 T-table for 0.01 Level of Significance.

## Decision:

$$
\begin{aligned}
& t_{\text {cal }}(1.71)>t_{\text {critical or tabulated at } d f=24, \alpha=0.05}(0.90) \\
& t_{\text {cal }}(2.49)>t_{\text {critical or tabulated at } d f=24, \alpha=0.05}(0.90)
\end{aligned}
$$

Conclusion:
Since $t_{\text {cal }}$ is greater than $t_{\text {crit at } d f=24}$ at both $5 \%$ and $1 \%$ levels of significance, then the sample mean is significantly different from the population mean or the hypothesize mark.

## Using the independent $t$-test

The independent t -test is used to test whether the means of two independent groups are the same or differ from each other. For this test to be used the two
groups must be independent from each other. The formula for the computation of the $t$-calculated value is given by the formula:

$$
t=\frac{t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\left(\frac{S s_{1}+s s_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}}{\sqrt{\left(\frac{\bar{x}_{1}-\bar{x}_{2}}{\left(\frac{x_{1}^{2}-\frac{\sum\left(x_{1}\right)^{2}}{n_{1}}+\sum x_{2}^{2}-\frac{\sum\left(x_{2}\right)^{2}}{n_{2}}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right.}}
$$

where $S S_{1}=$ Sum of Squares of Group one, $S S_{2}=$ Sum of Squares of Group two, where $n_{1}$ and $n_{2}$ are sample sizes of group one and two respectively.

It should be noted that the sample sizes may be equal or unequal depending on the data being collected.

Now let us assume a researcher want to test whether the sample means of the performance of two groups of students pursuing two different programmes based on the data summarized below:

## 1. Equal Sample Size

Table 8.2.1 Data to Illustrate Equal Sample Size.

| Sample No. | A | B |
| :---: | :---: | :---: |
| 1 | 25 | 34 |
| 2 | 45 | 59 |
| 3 | 63 | 73 |
| 3 | 21 | 43 |
| 4 | 19 | 17 |
| 5 | 78 | 47 |

For the table above the sample sizes for the two independent groups (A and B) are equal. Each group has a sample size of 6 .

In order to compute the t -calculated value, the sample means and the sum of squares for each of group is determined.

The means of each group is calculated as follows:

$$
\begin{gathered}
\bar{x}_{A}=\frac{\sum x_{1}+x_{2}+x_{3}+\ldots .+x_{n}}{n_{A}} \\
\bar{x}_{A}=\frac{\sum 25+45+63+\ldots .+78}{6}=41.83 \\
\bar{x}_{B}=\frac{\sum x_{1}+x_{2}+x_{3}+\ldots . .+x_{n}}{n_{B}} \\
\bar{x}_{B}=\frac{\sum 34+59+73+\ldots .+47}{6}=45.5
\end{gathered}
$$

The Sum of Square for each of the groups is also determined as follows:

$$
\begin{gathered}
S S_{A}=\sum x_{A}^{2}-\frac{\sum\left(x_{A}\right)^{2}}{n_{A}} \\
S S_{A}=\sum\left(25^{2}+45^{2}+63^{2}+\ldots+78^{2}\right)-\frac{\sum(25+45+63+\cdots+78)^{2}}{6} \\
S S_{A}=13505-10500.17=3004.83 \\
S S_{B}=\sum x_{B}^{2}-\frac{\sum\left(x_{B}\right)^{2}}{n_{B}} \\
t_{c a l}=\frac{\bar{x}_{A}-\bar{x}_{B}}{\sqrt{\left(\frac{\sum x_{A}^{2}-\frac{\sum\left(x_{A}\right)^{2}}{n_{A}}+\sum x_{B}^{2}-\frac{\sum\left(x_{B}\right)^{2}}{n_{B}}}{n_{A}+n_{B}-2}\right)\left(\frac{1}{n_{A}}+\frac{1}{n_{B}}\right)}} \\
\sqrt{\left(34^{2}+59^{2}+73^{2}+\ldots+47^{2}\right)-\frac{\sum(34+59+73+\cdots+47)^{2}}{6}} \\
t_{c a l}=\frac{14313-12421.5=1891.5}{\sqrt{\left(\frac{3004.83+1891.5}{6+6-2}\right)\left(\frac{1}{6}+\frac{1}{6}\right)}}
\end{gathered}
$$

$$
t_{c a l}=\frac{-3.67}{\sqrt{\left(\frac{(4896.33)}{10}\right)\left(\frac{2}{6}\right)}}=\frac{-3.67}{\sqrt{489.97}}=\frac{-3.67}{22.14}=-0.17
$$

The degree of freedom $(d f)=(n+n-2)=(6+6-2)=10$.

The t-critical value can now be read from the t-test table and then compared to the t -calculated to take the decision.

| $\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \end{array}$ | $\begin{array}{r} t_{\text {so }} \\ 0.50 \\ 1.00 \end{array}$ | $\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \end{array}$ | $\begin{array}{r} t_{. s 0} \\ 0.20 \\ 0.40 \end{array}$ | $\begin{gathered} t_{s 5}^{55} \\ 0.15 \\ 0.30 \end{gathered}$ | $\begin{array}{r} t_{.80} \\ 0.10 \\ 0.20 \end{array}$ | $\begin{gathered} t_{.85} \\ 0.05 \\ 0.10 \end{gathered}$ | $\begin{array}{r} t .875 \\ 0.025 \\ 0.05 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df |  |  |  |  |  |  |  |
| 1 | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 1271 |
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3. 82 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2. 76 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.971 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 |
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2. $\$ 1.2$ |
| 10 | Q.e00 | 0.700 | 0.079 | 4.000 | 4.972 | +04 | 2.228 |
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 |

Figure 8.2.1 T-table for 0.05 Level of Significance.

| $\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \end{array}$ | $\begin{array}{r} t_{50} \\ 0.50 \\ 1.00 \end{array}$ | $\begin{array}{r} t_{75} \\ 0.25 \\ 0.50 \end{array}$ | $\begin{array}{r} t_{s 0} \\ 0.20 \\ 0.40 \end{array}$ | $\begin{gathered} t_{35} \\ 0.15 \\ 0.30 \end{gathered}$ | $\begin{array}{r} t_{.80} \\ 0.10 \\ 0.20 \end{array}$ | $\begin{gathered} t_{.95} \\ 0.05 \\ 0.10 \end{gathered}$ | $\begin{array}{r} t_{\text {, } 975} \\ 0.025 \\ 0.05 \end{array}$ | $\begin{array}{r} t_{.8} \\ 0.01 \\ 0.02 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 3182 |
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6. 66 |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4. 841 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3. 47 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3. 665 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3. 43 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2. 98 |
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2. 996 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.621 |
| 10 | 0.000 | 0.700 | -0.079 | 4.000 | 4.072 | 4.042 | 2-220 | 2.764 |
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 |

Figure 8.2.2 T-table for 0.01 Level of Significance.

Decision:

$$
\begin{aligned}
& t_{\text {cal }}(2.23)>t_{\text {critical or tabulated at } d f=10, \alpha=0.05}(-0.17) \\
& t_{\text {cal }}(2.76)>t_{\text {critical or tabulated at } d f=10, \alpha=0.01}(-0.17)
\end{aligned}
$$

## Conclusion:

Since $t_{\text {cal }}$ is greater than $t_{\text {crit at } d f=10}$ at both $5 \%$ and $1 \%$ levels of significance, then the sample mean of the two independent group is significantly different.
2. Unequal Sample Size

Table 8.3.1 Data to Illustrate Equal Sample Size.

| Sample No. | A | B |
| :---: | :---: | :---: |
| 1 | 25 | 34 |
| 2 | 45 | 59 |
| 3 | 63 | 73 |
| 4 | 21 | 43 |
| 5 | 19 |  |
| 6 | 78 |  |

In the case given above, the two independent groups have unequal sample sizes: Group has a sample size of 6 and B, a sample size of 4 . This case can be handled in a similar way as done below: The means of each group is calculated as follows:

$$
\begin{gathered}
\bar{x}_{A}=\frac{\sum x_{1}+x_{2}+x_{3}+\ldots .+x_{n}}{n_{A}} \\
\bar{x}_{A}=\frac{\sum 25+45+63+\ldots .+78}{6}=41.83 \\
\bar{x}_{B}=\frac{\sum x_{1}+x_{2}+x_{3}+\ldots . .+x_{n}}{n_{B}} \\
\bar{x}_{B}=\frac{\sum 34+59+73+43}{4}=52.25
\end{gathered}
$$

The Sum of Square for each of the groups is also determined as follows:

$$
S S_{A}=\sum x_{A}^{2}-\frac{\sum\left(x_{A}\right)^{2}}{n_{A}}
$$

$$
\left.\begin{array}{c}
S S_{A}=\sum\left(25^{2}+45^{2}+63^{2}+\ldots+78^{2}\right)-\frac{\sum(25+45+63+\cdots+78)^{2}}{6} \\
S S_{A}=13505-10500.17=3004.83 \\
S S_{B}=\sum x_{B}^{2}-\frac{\sum\left(x_{B}\right)^{2}}{n_{B}} \\
S S_{B}=\sum\left(34^{2}+59^{2}+73^{2}+43^{2}\right)-\frac{\sum(34+59+73+43)^{2}}{4} \\
S S_{B}=11815-10920.25=894.75 \\
t_{\text {cal }}=\frac{\bar{x}_{A}-\bar{x}_{B}}{\left.\sqrt{\left(\frac{\left.\sum x_{A}^{2}-\frac{\sum\left(x_{A}\right)^{2}}{n_{A}}+x_{B}^{2}-\frac{\sum\left(x_{B}\right)^{2}}{n_{B}}\right)}{n_{B}-2}\right)\left(\frac{1}{n_{A}}\right.}+\frac{1}{n_{B}}\right)} \\
t_{\text {cal }=\frac{41.83-52.25}{\sqrt{\left(\frac{3004.83+894.75)}{6+4}\right)\left(\frac{1}{6}+\frac{1}{4}\right)}}}^{\sqrt{\left(\frac{(3899.58)}{8}\right)\left(\frac{5}{12}\right)}}=\frac{-3.67}{\sqrt{487.86}}=\frac{-3.67}{22.09}
\end{array}\right)-0.17 .
$$

The degree of freedom $(d f)=n+n-2=(6+4-2)=8$

Now the researcher can take the decision by reading t-critical value from the t -test table and then compared to the t-calculated value.

| cum. prob <br> one-tail <br> two-tails | $\begin{array}{r} t_{\text {s0 }} \\ 0.50 \\ 1.00 \end{array}$ | $\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \end{array}$ | $\begin{array}{r} t_{30} \\ 0.20 \\ 0.40 \end{array}$ | $\begin{array}{r} t_{.35} \\ 0.15 \\ 0.30 \end{array}$ | $\begin{array}{r} t_{.80} \\ 0.10 \\ 0.20 \end{array}$ | $\begin{array}{r} t_{\mathbf{A 5}} \\ 0.05 \\ 0.10 \end{array}$ | $\begin{array}{r} t_{375} \\ 0.025 \\ 0.05 \end{array}$ | $\begin{gathered} t_{s,} \\ 0.01 \\ 0.02 \end{gathered}$ | $\begin{array}{r} t_{96} \\ 0.005 \\ 0.01 \end{array}$ | $\begin{array}{r} t_{99} \\ 0.001 \\ 0.002 \end{array}$ | $\begin{array}{r} t_{\text {ans }} \\ 0.0005 \\ 0.001 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| d | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 1271 | 31.82 | 63.66 | 318.31 | 636.62 |
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 | 31.599 |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3. 82 | 4.541 | 5.841 | 10.215 | 12.924 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2. 76 | 3.747 | 4.604 | 7.173 | 8.610 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.51 | 3.365 | 4.032 | 5.893 | 6.869 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.65 | 2.998 | 3.499 | 4.785 | 5.408 |
|  | -000 | 0700 | 0000 | 1.100 | +.007 | 4.000 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 | 4.781 |

Figure 8.3.1 T-table for 0.05 Level of Significance.


Figure 8.3.2 T-table for 0.01 Level of Significance.

## Decision:

$$
\begin{aligned}
& t_{\text {cal }}(2.31)>t_{\text {critical or tabulated at } d f=8, \alpha=0.05}(-0.17) \\
& t_{\text {cal }}(2.90)>t_{\text {critical or tabulated at } d f=8, \alpha=0.01}(-0.17)
\end{aligned}
$$

## Conclusion:

Since $t_{\text {cal }}$ is greater than $t_{\text {crit at } d f=10}$ at both $5 \%$ and $1 \%$ levels of significance, then the sample mean of the two independent group is significantly different.

Z-test

The Z-test also functions like the t -test but the difference here is that when the sample size exceeds 30 and the standard deviation of the population is known, the
data is considered as a large sample and thus the Z-test becomes the appropriate test. There are several Z-tests just like the t-tests. These include: one sample Z-test for proportions; two sample z-Test for Proportions; one sample Z-test; two sample Z-test with equal variance; two sample Z-test with unequal variance.

## One sample Z-test for proportions

This is used to test whether the proportions of a sample are the same or different. Let us say there is a claim made by buyers that 5 out of 10 cars manufactured by a company are faulty. To test this claim by the buyers assuming a random sample of 35 cars manufactured by the company out of 60 were faulty; the one sample test for proportions can be used.

To test this claim, the one sample test for proportions is used by following the procedure below:

State the hypothesis

$$
\begin{gathered}
P=\frac{S}{n}=\frac{9}{10}=0.9 \\
\hat{P}=\frac{s_{T}}{n_{T}}=\frac{35}{60}=0.58
\end{gathered}
$$

where $p=$ proportion $n=$ number of proportion, $s_{T}=$ Scores or counts out of random sample, $n T=$ Total random sample number, $s=$ scores or counts out of number of proportion.

$$
\begin{aligned}
& H_{o}: P=0.5 \\
& H_{1}: P \neq 0.5
\end{aligned}
$$

Choose the level of significance
Let us use $\alpha=5$ or 0.05 .

State the decision rule:


Figure 8.4.1 Illustration how the chosen $\boldsymbol{\alpha}$ should be handled.
Since the hypothesis is non directional i.e. (the equal sign has been used). It means it is a two tailed tests, therefore we use $\alpha=\frac{5}{2}=0.025$, in the right and left directions, hence to find the Z-value in the left direction look for the Z-value for $(1-0.025)=0.975$ in both directions. The Z- value for 0.0975 in the table is -1.96 and 1.96 .

$$
\begin{gathered}
\text { Reject } H_{0} \text { if } Z<-1.96 \text { or } Z>1.96 \\
\text { Fail to reject } H_{0} \text { if }-1.96 \leq Z \leq 1.96
\end{gathered}
$$

Calculate the test statistics (Z- calculated)

$$
\begin{gathered}
Z=\frac{\hat{P}-P}{\sqrt{\frac{P(1-P)}{n_{T}}}} \\
Z=\frac{0.58-0.90}{\sqrt{\frac{0.90(1-0.90)}{100}}} \\
Z=\frac{-0.32}{\sqrt{\frac{0.90(0.1)}{100}}}=\frac{-0.32}{\sqrt{0.0009}}=\frac{-0.32}{0.03}=-10.67
\end{gathered}
$$

State the results

$$
\begin{gathered}
Z=-10.67 \\
\text { Reject } H_{0} \text { because } Z<-1.96
\end{gathered}
$$

## Make the conclusion

It can therefore be concluded there that the claim made by the buyers that 5 out of 10 manufactured cars are faulty is true.

Two sample Z-test for proportions
The two sample proportion test is used to test whether proportions of two samples are the same or different. If there is a claim that drug A is more efficacious than drug B, and a random sample of 40 out of 100 patients and 56 out of 100 patients recovered from the same disease as a result of administering drugs $A$ and $B$ respectively to them.

State the hypothesis

$$
\begin{gathered}
P_{1}=\frac{s_{1}}{n_{1}}=\frac{44}{100}=0.40 \\
P_{2}=\frac{s_{2}}{n_{2}}=\frac{56}{100}=0.56 \\
\hat{P}=P_{1}+P_{2}=\frac{40}{100}+\frac{56}{100}=0.40+0.56=0.96
\end{gathered}
$$

where $P_{1}=$ proportion $1, P_{2}=$ proportion $2, n_{1}=$ number of proportion 1 , $n_{2}=$ number of proportion $2, s_{1}=$ scores or counts out for proportion $1, s_{2}=$ scores or counts out for proportion 2

$$
\begin{aligned}
& H_{o}: P_{1}=P_{2} \\
& H_{1}: P_{1} \neq P_{2}
\end{aligned}
$$

Choose the level of significance
Let us choose $\propto=0.05$ 0r $5 \%$

State the decision rule

$$
\begin{gathered}
\text { Reject } H_{0} \text { if } Z<-1.96 \text { or } Z>1.96 \\
\text { Fail to reject } H_{0} \text { if }-1.96 \leq Z \leq 1.96
\end{gathered}
$$

Calculate the test statistics (Z- calculated)

$$
\begin{gathered}
Z=\frac{P_{1}-P_{2}}{\sqrt{\hat{P}(1-\hat{P})} x \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
Z=\frac{0.40-0.56}{\sqrt{0.96(1-0.96)} x \sqrt{\frac{1}{100}+\frac{1}{100}}} \\
Z=\frac{-0.16}{\sqrt{0.96(0.04)} x \sqrt{\frac{2}{200}}} \\
Z=\frac{-0.16}{\sqrt{0.04} x \sqrt{0.01}}=\frac{-0.16}{0.2 \times 0.1}=-8.0
\end{gathered}
$$

State the results

$$
\begin{gathered}
Z=-8.0 \\
\text { Reject } H_{0} \text { because } Z<-1.96
\end{gathered}
$$

## Make the conclusion

The null hypothesis therefore must be rejected on the grounds that the data does not support it hence the alternate hypothesis is true i.e. drug A is more efficacious compared to drug B.

One sample Z-test

It is used for testing the claims when data is collected on two samples with equal variance. For instance, let us consider a case where the weights of mean in a country are normally distributed with a mean of 67 kg and standard deviation of 6 . Data on the weight of a sample size of 40 men within a city in that country was collected, and the mean weight determined to be 65 Kg . One can then test whether the mean weight of men in the city is higher than that of the country. To test this, the following procedures are followed:

State the hypothesis

$$
\begin{aligned}
& H_{o}: \bar{x}=\mu \\
& H_{1}: \bar{x}_{1} \neq \mu
\end{aligned}
$$

Choose the level of significance

$$
\text { Let } \propto=0.05 \text { or } 5 \%
$$

State the decision rule

$$
\begin{gathered}
\text { Reject } H_{0} \text { if } Z<-1.96 \text { or } Z>1.96 \\
\text { Fail to reject } H_{0} \text { if }-1.96 \leq Z \leq 1.96
\end{gathered}
$$

Calculate the test statistics (Z-calculated)

$$
\begin{gathered}
Z=\frac{\bar{x}-\mu}{\sqrt{\frac{\delta}{n}}} \\
\bar{x}=65 \mu=67=70 \delta=6 n=40 \\
Z=\frac{65-67}{\sqrt{\frac{6}{40}}}=\frac{-2}{\sqrt{0.15}}=\frac{-2}{1.08}=-1.85
\end{gathered}
$$

State the results

$$
Z=-1.85
$$

Fail to reject $H_{0}$ because $-1.96 \leq Z \leq 1.96$

## Make the conclusion

The weight of the men in the city does not differ significantly from the weights of men in the country.

Two sample z-test with equal variance

It is used for testing the claims when data is collected on two samples with equal variance. For instance, let us consider a case where the weights of 60 men each from two different cities A and B in a country are normally distributed with means 65 kg and 70 kg respectively with equal standard deviation of 6 . A researcher can test whether the weights of men in the two cities differ.

The case above is handled as follows:

State the hypothesis

$$
\begin{aligned}
& H_{o}: \mu_{1}=\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Choose the level of significance

$$
\text { Let } \propto=0.05 \text { or } 5 \%
$$

State the decision rule

$$
\begin{gathered}
\text { Reject } H_{0} \text { if } Z<-1.96 \text { or } Z>1.96 \\
\text { Fail to reject } H_{0} \text { if }-1.96 \leq Z \leq 1.96
\end{gathered}
$$

Calculate the test statistics (Z-calculated)

$$
\begin{gathered}
Z=\frac{\bar{x}_{1}-\bar{x}_{2}}{\delta \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
\bar{x}_{1}=65 \bar{x}_{2}=70 \delta=6 n_{1}=60 n_{1}=60
\end{gathered}
$$

$$
\begin{gathered}
Z=\frac{65-70}{6 \sqrt{\frac{1}{60}+\frac{1}{60}}} \\
Z=\frac{-5}{6 \sqrt{\frac{2}{60}}}=\frac{-5}{6 \sqrt{0.03}}=\frac{-5}{6 \times 0.18}=\frac{-5}{1.08}=-4.63
\end{gathered}
$$

State the results

$$
\begin{gathered}
\qquad Z=-4.63 \\
\text { Reject } H_{0} \text { because } Z<-1.96
\end{gathered}
$$

## Make the conclusion

The weights of the men in the two cities are significantly different.
Two sample z-test with unequal variance.

Assuming a drink was manufactured and there is a claim that the drink increases weight when taken. Let us again assume that a sample size of 80 men of equal weights were selected in the country and 40 of them were given the drink and the other forty not. After six months weights of the men given the drink and those not given were determined and the following results obtained: Those given the drinks had a mean weight of 45 kg with a standard deviation of 4 while those not given had a mean weight of 35 kg with a standard deviation of 5. One can test whether the drink caused any significant change in the weights of men given the drink and those not. This can be tested below.

State the hypothesis

$$
\begin{aligned}
& H_{o}: \bar{x}_{1}=\bar{x}_{2} \\
& H_{o}: \bar{x}_{1} \neq \bar{x}_{2}
\end{aligned}
$$

Choose the level of significance

State the decision rule

$$
\begin{gathered}
\text { Reject } H_{0} \text { if } Z<-1.96 \text { or } Z>1.96 \\
\text { Fail to reject } H_{0} \text { if }-1.96 \leq Z \leq 1.96
\end{gathered}
$$

Calculate the test statistics (Z- calculated)

$$
\begin{gathered}
Z=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\delta_{1}^{2}}{n_{1}}+\frac{\delta_{2}^{2}}{n_{2}}}} \\
\bar{x}_{1}=45 \bar{x}_{2}=35 \delta_{1}^{2}=4 \delta_{2}^{2}=5 n_{1}=40 n_{1}=40 \\
Z=\frac{45-35}{\sqrt{\frac{4}{40}+\frac{5}{40}}} \\
Z=\frac{10}{\sqrt{\frac{9}{40}}}=\frac{10}{0.47}=21.08
\end{gathered}
$$

State the results

$$
\begin{gathered}
\qquad Z=21.08 \\
\text { Reject the null hypothesis }\left(H_{0}\right) \text { because } Z>1.9
\end{gathered}
$$

## Make the conclusion

It can therefore be concluded that weights of men given the drink are significantly different from those not given. Hence the drink might have caused this difference in weight.

## Chi-square Test

The chi-square test is used to test whether a relationship exist or not between two categorical variables; and also establish whether a number of outcomes are
occurring with equal frequencies or not; or conforming to a known distribution or not.

Basically the chi-square is used for the following: test for hypothesized ratios; test for homogeneity of data collected from experimental trials that can be repeated; test for the independence of two groups attribute data - in other words it implies testing for whether they have a relationship.

The formula below is used in computing the chi-square $\left(x^{2}\right)$ calculated value:

$$
x^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

$x^{2}=$ Chi - square value, $O=$ observed value $E=$ expected value

## Testing whether two outcomes occur with equal frequencies or not

Taking for instance a scenario where an individual is blindfolded and allowed to pick randomly each time a medal among five different medals placed on a table for 100 times, the data below is obtained:

Table 8.4.1 Data used for Illustration of Chi-square Test.

| Medal type | Observed frequency selected medals |
| :---: | :---: |
| Diamond | 25 |
| Gold | 30 |
| Bronze | 10 |
| Silver | 20 |
| Aluminium | 15 |

Now with this data, a researcher can test whether the frequency of the selection of medals are equal or not or follow a particular distribution using a chi-square test. In order to use a chi-square test, two particular set of data is required: the
observed values and expected values. The observed values are those collected from the experiment or the study. The expected values are based on calculations.

For instance in the case at hand, it can be said that once the section was done 100 times and each of the medals given equal chances of being selected, it presupposes that the expected frequencies of each medal of being selected is 100. Thus a table below can be developed for the data:

Table 8.4.2 Determining the Expected frequency from a given Data for calculating the Chi-square Test.

| Medal type | Observed frequency selected medals | Expected frequency of selected medals |
| :---: | :---: | :---: |
| Diamond | 25 | 100 |
| Gold | 30 | 100 |
| Bronze | 10 | 100 |
| Silver | 20 | 100 |
| Aluminium | 15 | 100 |

The chi-square test for the data is computed as follows:

$$
\begin{gathered}
x^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \\
x^{2}=\sum_{i=1}^{5} \frac{\left(O_{d}-E_{d}\right)^{2}}{E_{d}}+\frac{\left(O_{g}-E_{g}\right)^{2}}{E_{g}}+\frac{\left(O_{b}-E_{b}\right)^{2}}{E_{b}}+\frac{\left(O_{s}-E_{s}\right)^{2}}{E_{s}}+\frac{\left(O_{a}-E_{a}\right)^{2}}{E_{a}} \\
x^{2}=\sum_{i=1}^{5} \frac{(25-100)^{2}}{100}+\frac{(30-100)^{2}}{100}+\frac{(10-100)^{2}}{100}+\frac{(20-100)^{2}}{100}+\frac{(15-100)^{2}}{100} \\
x^{2}=\sum_{i=1}^{5} \frac{(-75)^{2}}{100}+\frac{(-70)^{2}}{100}+\frac{(-90)^{2}}{100}+\frac{(-80)^{2}}{100}+\frac{(-85)^{2}}{100} \\
x^{2}=\sum_{i=1}^{5} \frac{5625}{100}+\frac{4900}{100}+\frac{8100}{100}+\frac{6400}{100}+\frac{7225}{100}
\end{gathered}
$$

$$
x^{2}=\sum_{i=1}^{5} 56.25+49+81+64+72.25=322.5
$$

Thus $x_{\text {calculated }}^{2}=322.5$

$$
d f=n-1=5-1=4
$$

Therefore if $x_{\text {calculated }}^{2}>x_{\text {critical }}^{2}(d f=4, \alpha=0.050 r 0.01)$, then the frequencies of selecting the medals are significantly different.

However if $x_{\text {calculated }}^{2}<x_{\text {critical }}^{2}(d f=4, \alpha=0.05$ or 0.01$)$, then the frequencies of selecting the medals are not significantly different or equal.

Before a decision can be taken, the chi-square critical value must be read from the figure as show below:

The areas given across the top are the areas to the right of the critical value. To look up an area on the left, subtract it from one, and then look it up (ie: 0.05 on the left is 0.95 on the right)

| $\mathbf{d f}$ | $\mathbf{0 . 9 9 5}$ | $\mathbf{0 . 9 9}$ | $\mathbf{0 . 9 7 5}$ | $\mathbf{0 . 9 5}$ | $\mathbf{0 . 9 0}$ | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 0 5}$ | $\mathbf{0 . 0 2 5}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 0 5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | -- | -- | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.63 .5 | 7.879 |
| $\mathbf{2}$ | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
| $\mathbf{3}$ | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
| $\mathbf{4}$ | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | $\mathbf{9} .488$ | 11.143 | $\rightarrow 13.277$ | 14.860 |
| $\mathbf{5}$ | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.070 | 12.833 | 15.086 | 16.750 |
| $\mathbf{6}$ | 0.676 | 0.872 | 1.237 | 1.635 | 2.204 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 |

Figure 8.4.2 Chi-square Test Table.

From the table

$$
\begin{gathered}
\mathrm{x}_{\text {critical }}^{2}(\mathrm{df}=4, \alpha=0.05)=9.488 \\
x_{\text {critical }}^{2}(d f=4, \alpha=0.01)=13.277
\end{gathered}
$$

## Decision:

$$
x_{\text {calculated }}^{2}\left(>x_{\text {critical }}^{2} \text { at } d f=4,[\alpha=0.01 \text { (13.28) }] \text { and }[\alpha=0.05 \text { (9.49) }]\right.
$$

Conclusion:
The frequencies of selecting the medals are significantly different or are not equal.

Test for hypothesized ratios.
This test is used when there is an existing hypothesized ratio that is known to be working and a researcher has carried out a study relating to the ratio, he or she then can use chi-square to test whether the data collected in the study confirms or not the hypothesized ratio. Assuming there is known hypothesized ratio from a study that indicates that the number of birth per animal is in the ratio of 1:2 for male and female offspring respectively. If a researcher conducts an experiment on the births per animal over a period and recorded 92 and 212 male and female progenies respectively, then the chi-square test can be used to test this data collected against the hypothesized ratio.

In order to compute the chi-square value for this data, the expected values for each of the observation must be calculated.

Since the total birth per animal over the period is $92+212=304$, the expected values for each of the birth per gender for the animal over the period can be calculated by using the hypothesized ratio i.e. 1:2. Thus the expected values for the birth per gender for the animal over the period are calculated as follow:

$$
\begin{gathered}
E_{m}=\frac{\text { Ratio value for Male }}{\text { Total Ratio }} \times \text { Total Observed Value } \\
E_{m}=\frac{1}{3} \times 304=101.33 \\
E_{m}=\frac{\text { Ratio value for Female }}{\text { Total Ratio }} \times \text { Total Observed Value } \\
E_{f}=\frac{2}{3} \times 304=202.67
\end{gathered}
$$

Table 8.5.1 Data used as Illustration for testing of hypothesized ratio using Chi-square Test.

|  | Birth per animal |  |
| :---: | :---: | :---: |
| Gender | Observed Values | Expected Values |
| Male | 92 | 101.33 |
| Female | 212 | 202.67 |
| Total | 304 | 304 |

$$
\begin{gathered}
x^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \\
x^{2}=\sum_{i=1}^{2} \frac{\left(O_{m}-E_{m}\right)^{2}}{E_{m}}+\frac{\left(O_{f}-E_{f}\right)^{2}}{E_{f}} \\
x^{2}=\sum_{i=1}^{5} \frac{(92-101.33)^{2}}{101.33}+\frac{(212-202.67)^{2}}{202.67} \\
x^{2}=\sum_{i=1}^{5} \frac{87.05}{101.33}+\frac{87.05}{202.67}=0.86+0.43=1.29 \\
x^{2}=1.29 \\
d f=n-1=2-1=1
\end{gathered}
$$

Therefore if $x_{\text {calculated }}^{2}>x_{\text {critical }}^{2}(d f=1, \alpha=0.05$ or 0.01$)$ then the birth per gender animal is significantly different from the hypothesized ratio, that is to say the data collected does not confirm the hypothesized ratio.

However if $x_{\text {calculated }}^{2}<x_{\text {critical }}^{2}(d f=1, \alpha=0.05$ or 0.01$)$, then the birth per gender animal is not significantly different from the hypothesized ratio, that is to say that the data collected confirms the hypothesized ratio.

The areas given across the top are the areas to the right of the critical value. To look up an area on the left, subtract it from one, and then look it up (ie: 0.05 on the left is 0.95 on the right)

| $\mathbf{d f}$ | $\mathbf{0 . 9 9 5}$ | $\mathbf{0 . 9 9}$ | $\mathbf{0 . 9 7 5}$ | $\mathbf{0 . 9 5}$ | $\mathbf{0 . 9 0}$ | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 0 5}$ | $\mathbf{0 . 0 2 5}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | - | - | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
| $\mathbf{2}$ | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
| $\mathbf{3}$ | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
| $\mathbf{4}$ | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 |
| $\mathbf{5}$ | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.070 | 12.833 | 15.086 | 16.750 |
| $\mathbf{6}$ | 0.676 | 0.872 | 1.237 | 1.635 | 2.204 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 |
| $\mathbf{7}$ | 0.989 | 1.239 | 1.690 | 2.167 | 2.833 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 |
| $\mathbf{8}$ | 1.344 | 1.646 | 2.180 | 2.733 | 3.490 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 |
| $\mathbf{9}$ | 1.735 | 2.088 | 2.700 | 3.325 | 4.168 | 14.684 | 16.919 | 19.023 | 21.666 | 23.589 |
| $\mathbf{1 0}$ | 2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 |
| $\mathbf{1 1}$ | 2.603 | 3.053 | 3.816 | 4.575 | 5.578 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757 |

Figure 8.5.1 Chi-square Test Table.
The

$$
\begin{gathered}
x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.05)=3.841 ; \\
x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.01)=6.635 \\
\text { However if } x_{\text {calculated }}^{2}<x_{\text {critical }}^{2}(d f=1, \alpha=0.05 \text { or } 0.01)
\end{gathered}
$$

Decision:

$$
\begin{aligned}
& \mathrm{x}_{\text {calculated }}^{2}=1.29>x_{\text {critical }}^{2}(\text { at } \mathrm{df}=1, \alpha=0.05)=3.841 \\
& \mathrm{x}_{\text {calculated }}^{2}=1.29>x_{\text {critical }}^{2}(\text { at df }=1, \alpha=0.01)=6.635
\end{aligned}
$$

## Conclusion:

The birth per gender animal is significantly different from the hypothesized ratio, that is to say the data collected does not confirm the hypothesized ratio.

Test for homogeneity of data collected from experimental trials that can be repeated.

Once the researcher is able to confirm that the collected data from a study follows the given hypothesized ratio and the study can be repeated, the researcher can test the homogeneity of the data collected on repeated trials for
the study by the chi-square test. Thus the homogeneity of the data below can be tested by Chi-square test.

Table 8.5.2 Data for Illustration of the Test of Homogeneity using Chi-square Test.

| Births per animal per time | Male | Female | Row Total |
| :---: | :---: | :---: | :---: |
| $1^{\text {st }}$ | 12 | 26 | 38 |
| $2^{\text {nd }}$ | 9 | 16 | 25 |
| $3^{\text {rd }}$ | 15 | 27 | 42 |
| $4^{\text {th }}$ | 17 | 33 | 50 |
| Column Total | 53 | 102 | 155 |
|  | Grand Total |  |  |

In this situation, the researcher can compute the expected values by using the formula below:

$$
E_{V}=\frac{R_{T} \times C_{T}}{G_{T}}
$$

$E_{V}=$ Expected value, $R_{T}=$ Row Total, $C_{T}=$ Column Total, $G_{T}=$ Grand Total.
Thus expected values for the $1^{\text {st }}$ Trial:
Table 8.5.3 Determining the Expected Values for the Data used for Test of Homogeneity.

| Births per animal per time | Male |  | Female | Row Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\text {st }}$ | 12 | $E_{V}=\frac{38 \times 53}{155}$ | 26 | $E_{V}=\frac{38 \times 102}{155}$ | 38 |
| $2^{\text {nd }}$ | 9 | $E_{V}=\frac{25 \times 53}{155}$ | 16 | $E_{V}=\frac{25 \times 102}{155}$ | 25 |
| $3^{\text {rd }}$ | 15 | $E_{V}=\frac{42 \times 53}{155}$ | 27 | $E_{V}=\frac{42 \times 102}{155}$ | 42 |
| $4^{\text {th }}$ | 17 | $E_{V}=\frac{50 \times 53}{155}$ | 33 | $E_{V}=\frac{50 \times 102}{155}$ | 50 |
| Column Total | 53 |  | 102 |  | 155 |
| Grand Total |  |  |  | 155 |  |

Table 8.5.4 Determined Expected Values for the Data used for the Test of Homogeneity.

| Births per <br> animal per time | Male Observed <br> values | Male Expected <br> values | Female Observed <br> Values | Female Expected <br> values | Row Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\text {st }}$ | 12 | 12.99 | 26 | 25.01 | 38 |
| $2^{\text {nd }}$ | 9 | 8.54 | 16 | 16.45 | 25 |
| $3^{\text {rd }}$ | 15 | 14.36 | 27 | 27.64 | 42 |
| $4^{\text {th }}$ | 17 | 17.10 | 33 | 32.90 | 50 |
| Column Totals | 53 |  |  | 102 | 155 |
| Grand Total |  |  |  | 155 |  |

The chi-square value for the data can now be computed as follows:

$$
\begin{gathered}
x^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \\
x^{2}=\sum_{i=1}^{n} \frac{(12-12.99)^{2}}{12.99}+\cdots+\frac{(17-17.10)^{2}}{17.10}+\frac{(26-25.01)^{2}}{25.01}+\cdots+\frac{(33-32.90)^{2}}{32.90} \\
x^{2}=\sum_{i=1}^{n} \frac{(-0.994)^{2}}{12.99}+\cdots+\frac{(-0.097)^{2}}{17.10}+\frac{(0.994)^{2}}{25.01}+\cdots+\frac{(0.097)^{2}}{32.90} \\
x^{2}=\sum_{i=1}^{n} \frac{0.987}{12.99}+\cdots+\frac{0.009}{17.10}+\frac{0.987}{25.01}+\cdots+\frac{0.009}{32.90} \\
x^{2}=\sum_{i=1}^{n} 0.076+\cdots+0.001+0.040+\cdots+0.0003=0.20 \\
d f=n-1=4-1=3
\end{gathered}
$$

The areas given across the top are the areas to the right of the critical value. To look up an area on the left, subtract it from one, and then look it up (ie: 0.05 on the left is 0.95 on the right)

| df | $\mathbf{0 . 9 9 5}$ | $\mathbf{0 . 9 9}$ | $\mathbf{0 . 9 7 5}$ | $\mathbf{0 . 9 5}$ | $\mathbf{0 . 9 0}$ | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 0 5}$ | $\mathbf{0 . 0 2 5}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | -- | -- | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
| $\mathbf{2}$ | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
| $\mathbf{3}$ | -0.072 | 0.115 | 0.216 | 0.352 | 0.584 | $6.251 \rightarrow$ | 7.815 | $9.348 \rightarrow 11.345$ | 12.838 |  |

Figure 8.5.2 Chi-square Test Table.

The read critical values from the table at both $1 \%$ and $5 \%$ levels of significance are:

$$
\begin{aligned}
& x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.05)=7.82 \\
& x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.01)=11.35
\end{aligned}
$$

Decision:

$$
\begin{aligned}
& x_{\text {calculated }}^{2}=0.20<x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.05)=7.82 \\
& x_{\text {calculated }}^{2}=0.20<x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.01)=11.35
\end{aligned}
$$

Conclusion:

It means the homogeneity of the data does not differ significantly for each trial. The data collected is similar for each trial.

## Test for the independence of two groups attribute data

Considering another case where a researcher needs to establish whether a relationship exist between three different modes of admission of students into different programmes and the performance of the students. A data below can be subjected to the analysis:

Table 8.6.1 Data used for Illustration of the Test for the Independence of Two Groups.

| Modes of students admission | Grade Points of students in each Programme |  | Row Total |
| :---: | :---: | :---: | :---: |
|  | Mechanical Engineering | Electrical Engineering |  |
| Regular | 4.2 | 3.1 | 7.3 |
| Access | 3.2 | 3.4 | 6.6 |
| Matured | 3.6 | 2.1 | 5.7 |
| Column Total | 11 | 8.6 | 19.6 |

For the above data, the expected values for each observed value are computed as follows:

$$
E_{V}=\frac{R_{T} x C_{T}}{G_{T}}
$$

$E_{V}=$ Expected value, $R_{T}=$ Row Total, $C_{T}=$ Column Total, $G_{T}=$ Grand Total.
Table 8.6.2 Determining the Expected Values for Data used for the Illustration of the Test for the Independence of Two Groups.

| Modes of students admission | Grade Points of students in each Programme |  |  |  | Row Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mechanical Engineering |  | Electrical Engineering |  |  |
|  | Observed values | Expected values | Observed values | Expected Values |  |
| Regular | 4.2 | $E_{V}=\frac{7.3 \times 11}{19.6}$ | 3.1 | $E_{V}=\frac{7.3 \times 8.6}{19.6}$ | 7.3 |
| Access | 3.2 | $E_{V}=\frac{6.6 \times 11}{19.6}$ | 3.4 | $E_{V}=\frac{6.6 \times 8.6}{19.6}$ | 6.6 |
| Matured | 3.6 | $E_{V}=\frac{5.7 \times 11}{19.6}$ | 2.1 | $E_{V}=\frac{5.7 \times 8.6}{19.6}$ | 5.7 |
| Column Total | 11 |  | 8.6 |  | 19.6 |

Table 8.6.3 Determined Expected Values for Data used for the Illustration of the Test for the Independence of Two Groups.

| Modes of students <br> admission |  | Grade Points of students in each Programme | Row Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mechanical Engineering <br> Observed values Expected values | Electrical Engineering |  |  |  |
| Regular | 4.2 | 4.1 | 3.1 | Experved values | Expected Values |
| Access | 3.2 | 3.7 | 3.4 | 3.2 | 7.3 |
| Matured | 3.6 | 3.2 | 2.1 | 2.9 | 6.6 |
| Column Total | 11 |  | 8.6 | 2.5 | 5.7 |

The chi-square value for the data can now be computed as follows:

$$
\begin{gathered}
x^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \\
x^{2}=\sum_{i=1}^{n} \frac{(4.2-4.1)^{2}}{12.99}+\cdots+\frac{(3.6-3.2)^{2}}{17.10}+\frac{(3.1-3.2)^{2}}{25.01}+\cdots+\frac{(2.1-2.5)^{2}}{32.90} \\
x^{2}=\sum_{i=1}^{3} \frac{(0.1)^{2}}{12.99}+\cdots+\frac{(0.4)^{2}}{17.10}+\frac{(-0.1)^{2}}{25.01}+\cdots+\frac{(-0.4)^{2}}{32.90}
\end{gathered}
$$

$$
\begin{gathered}
x^{2}=\sum_{i=1}^{3} \frac{(0.1)^{2}}{12.99}+\cdots+\frac{(0.4)^{2}}{17.10}+\frac{(-0.1)^{2}}{25.01}+\cdots+\frac{(-0.4)^{2}}{32.90} \\
x^{2}=\sum_{i=1}^{3} \frac{(0.1)^{2}}{12.99}+\cdots+\frac{(0.4)^{2}}{17.10}+\frac{(-0.1)^{2}}{25.01}+\cdots+\frac{(-0.4)^{2}}{32.90} \\
x^{2}=\sum_{i=1}^{3} \frac{0.01}{12.99}+\cdots+\frac{0.16}{17.10}+\frac{0.01}{25.01}+\cdots+\frac{0.16}{32.90} \\
x^{2}=\sum_{i=1}^{3} 0.002+\cdots+0.050+0.003+\cdots+0.020=0.23 \\
x^{2}=0.23 \\
d f=\left(n_{1}-1\right)\left(n_{2}-1\right)=(3-1)(2-1)=3
\end{gathered}
$$

The areas given across the top are the areas to the right of the critical value. To look up an area on the left, subtract it from one, and then look it up (ie: 0.05 on the left is 0.95 on the right)

| df | $\mathbf{0 . 9 9 5}$ | $\mathbf{0 . 9 9}$ | $\mathbf{0 . 9 7 5}$ | $\mathbf{0 . 9 5}$ | $\mathbf{0 . 9 0}$ | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 0 5}$ | $\mathbf{0 . 0 2 5}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | -- | -- | 0.001 | 0.004 | 0.016 | 2.706 | 3.441 | 5.024 | 6.635 | 7.879 |
| $\mathbf{2}$ | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.110 | 10.597 |
| $\mathbf{3}$ | -0.072 | 0.115 | 0.216 | 0.352 | 0.584 | $\mathbf{6 . 2 5 1}$ | 7.815 | $\mathbf{9 . 3 4 8}$ | 11.345 | 12.838 |

Figure 8.6.1 Chi-square Test Table.

The read critical values from the table at both $1 \%$ and $5 \%$ levels of significance are:

$$
\begin{aligned}
& x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.05)=7.82 \\
& x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.01)=11.35
\end{aligned}
$$

It should be noted that with the testing of the independency of two variables or groups data attribute. These hypotheses are put forward:

$$
\begin{gathered}
H_{0}: \text { the two groups are independent of eacher other } \\
H_{1}: \text { one variable or group depend on the other }
\end{gathered}
$$

Decision:

$$
x_{\text {calculated }}^{2}=0.23<x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.05)=7.82
$$

$$
x_{\text {calculated }}^{2}=0.23<x_{\text {critical }}^{2}(\text { at } d f=1, \alpha=0.01)=11.35
$$

Conclusion:

$$
\begin{aligned}
& \text { since } x_{\text {calculated }}^{2}(0.23)<x_{\text {critical }}^{2}(7.82) \text { at } d f=1 \text {, } \\
& \qquad \alpha=0.0 \text { and (11.35) at } d f=3, \alpha=0.01
\end{aligned}
$$

we fail to reject the null hypothesis.

It means the data supports the null hypothesis which is the mode of admission is independent of the performance of the students. The data collected is similar for each trial.

## Analysis of Variance (ANOVA)

Analysis of Variance has the acronym (ANOVA). It is used to test whether there is a difference between the means of two or more continuous dependent variables or to test the difference in the means of a single continuous dependent variable determined at two or more different times. Whereas the t-test employs the $t$-statistics, ANOVA employs the F-test or the F-statistics. When finding the difference between two groups, both the t -statistics and the F-statistics give the same results. However ANOVA can be used to test whether or not differences exist between two or more groups whereas t-test can be used to test whether there is a difference in the means of just two groups at a time.

Assuming a researcher collects data on the performances in terms of the final grade points obtained by students enrolled in mechanical, electrical and civil engineering at the end of their programmes and summarized it in a table 8.7.1.

Table 8.7.1 Data for the Illustration of ANOVA.

| Grade Points of students in each Programme |  |  |
| :---: | :---: | :---: |
| Mechanical Engineering (m) | Civil Engineering (c) | Electrical Engineering (e) |
| 4.2 | 3.2 | 3.1 |
| 3.2 | 2.1 | 3.4 |
| 3.6 | 4.1 | 2.1 |
| 3.7 | 2.3 | 4.4 |
| 2.3 | 4.2 | 3.7 |

The researcher can test whether means of the performance of the students in the different programmes differ or are the same using ANOVA.

To use the data in the table above to test whether the mean performances of the students differ between the programmes, the researcher must do the calculations below.

After the data have been collected the researcher needs to calculate the following from the data:

- Sum of Scores of each group $=\sum x$.
- Mean of Scores of each group $=\bar{x}$.
- Sum of the Squares of Scores of each group $=\sum x^{2}$.
- Summation of the Sums of the Scores for all the groups $=\sum\left(\sum x\right)$.
- Summation of the Sums of squares of the Scores for all the groups $=$ $\sum\left(\sum x^{2}\right)$.

Let us proceed to calculate these variables for the data:

First, we calculate the sums of the scores, the sums of squares and the means of each group

$$
\begin{aligned}
& \sum x_{m}=m_{1}+m_{2}+m_{3} \ldots \ldots+m_{n} \\
& \sum x_{m}=4.2+3.2+3.6 \ldots+2.3=17 \\
& \bar{x}_{m}=\frac{\sum x_{m}}{n_{m}}=\frac{17}{5}=3.40 \\
& \sum x_{c}=c_{1}+c_{2}+c_{3} \ldots \ldots+c_{n} \\
& \sum x_{c}=3.2+2.1+4.1 \ldots+4.2=15.9 \\
& \bar{x}_{c}=\frac{\sum x_{c}}{n_{c}}=\frac{15.9}{5}=3.18 \\
& \sum x_{e}=e_{1}+e_{2}+e_{1} \ldots \ldots+e_{n} \\
& \sum x_{e}=3.1+3.4+2.1 \ldots+3.7=16.7 \\
& \bar{x}_{e}=\frac{\sum x_{e}}{n_{e}}=\frac{16.7}{5}=3.34 \\
& \sum x_{m}{ }^{2}=m_{1}{ }^{2}+m_{2}{ }^{2}+m_{3}{ }^{2} \ldots+m_{n}{ }^{2} \\
& \sum x_{m}{ }^{2}=4.2^{2}+3.2^{2}+3.6^{2} \ldots+2.3^{2}=59.82 \\
& \sum x_{c}{ }^{2}=c_{1}{ }^{2}+c_{2}{ }^{2}+c_{3}{ }^{2} \ldots+c_{n}{ }^{2} \\
& \sum x_{c}{ }^{2}=3.2^{2}+2.1^{2}+4.1^{2} \ldots+4.2^{2}=54.39 \\
& \sum x_{e}{ }^{2}=e_{1}{ }^{2}+e_{2}{ }^{2}+e_{3}{ }^{2} \ldots+e_{n}{ }^{2} \\
& \sum x_{e}{ }^{2}=4.2^{2}+3.2^{2}+3.6^{2} \ldots+2.3^{2}=58.63
\end{aligned}
$$

The next step is to find the summation of the sums of scores of each group; and the summation of the sums of squares of scores for each group:

$$
\sum\left(\sum x\right)=\sum x_{m}+\sum x_{c}+\sum x_{e}=17+15.9+16.7=49.6
$$

$$
\sum\left(\sum x^{2}\right)=\sum x_{m}^{2}+\sum x_{c}{ }^{2}+\sum x_{e}{ }^{2}=59.82+54.39+58.63=172.84
$$

Calculate for the Total Sum of Squares; Sum of Squares between groups; and the Sum of Squares within groups

$$
\begin{gathered}
S S_{T}=\sum\left(\sum x^{2}\right)-\frac{\left(\sum\left(\sum x\right)^{2}\right.}{n_{T}} \\
S S_{T}=\sum\left(\sum x^{2}\right)-C F \\
C F=\frac{\left(\sum\left(\sum x\right)^{2}\right.}{n_{T}} \\
S S_{T}=\sum 172.84-\frac{(49.6)^{2}}{15} \\
S S_{T}=\sum 172.84-\frac{2460.16}{15}=172.84-164.01=8.83
\end{gathered}
$$

$C F=$ Correction factorm, $n_{T}=n_{m}+n_{c}+n_{e}=$ Total number of scores, $S S_{T}=$ Total Sum of Squares $n=n_{e}=n_{e}=n_{e}=$ number scores for each group

$$
\begin{gathered}
S S_{B}=\sum \frac{\left(\sum x\right)^{2}}{n}-\frac{\left(\sum\left(\sum x\right)^{2}\right.}{n_{T}} \\
S S_{B}=\sum\left(\frac{\left(x_{m}\right)^{2}}{n_{m}}+\frac{\left(x_{c}\right)^{2}}{n_{c}}+\frac{\left(x_{e}\right)^{2}}{n_{e}}\right)-\frac{\left(\sum\left(\sum x\right)^{2}\right.}{n_{T}} \\
S S_{B}=\sum\left(\frac{(17)^{2}}{5}+\frac{(15.9)^{2}}{5}+\frac{(16.7)^{2}}{5}\right)-\frac{(49.6)^{2}}{15} \\
S S_{B}=\sum\left(\frac{289}{5}+\frac{252.81}{5}+\frac{278.89}{5}\right)-\frac{2460.16}{15} \\
S S_{B}=\sum(57.8+50.56+55.78)-164.01=164.14-164.01=0.13
\end{gathered}
$$

$S S_{B}=$ Sum of Squares between the groups, $n=n_{m}=n_{c}=n_{e}=$ number scores for each group

$$
S S_{T}=S S_{B}+S S_{W}
$$

Therefore

$$
\begin{gathered}
S S_{W}=S S_{T}-S S_{B} \\
S S_{W}=8.83-0.13=8.7
\end{gathered}
$$

Where $S S_{W}=$ Sum of Squares within the groups

$$
\begin{gathered}
d f_{T}=d f_{B}+d f_{W} \\
d f_{T}=n-1=15-1=14 \\
d f_{B}=n-1=3-1=2 d f_{W}=N_{T}-n=15-3=12
\end{gathered}
$$

The Means Squares of between and within groups are then computed:

$$
\begin{gathered}
M S_{B}=\frac{S S_{B}}{d f_{B}} \\
M S_{B}=\frac{0.13}{2}=0.07 \\
M S_{W}=\frac{S S_{W}}{d f_{W}} \\
M S_{W}=\frac{8.7}{12}=0.73
\end{gathered}
$$

where $M S_{B}=$ Mean Square between groups; $M S_{W}=$ Mean Squares within groups; $d f_{B}=$ between groups degree of freedom; $d f_{W}=$ within groups degree of freedom.

Finally compute the F-calculated value and read F-critical values from F-test table for comparison:

$$
\begin{gathered}
F=\frac{M S_{B}}{M S_{W}} \\
F_{\text {calculated }}=\frac{0.07}{0.73}=0.10
\end{gathered}
$$

Reading of F-critical values at 5\% and $1 \%$ levels of significance shown below:

Critical values of $F$ for the 0.05 significance level:

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 |
| $\mathbf{2}$ | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 |
| $\mathbf{3}$ | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 |
| $\mathbf{4}$ | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 |
| $\mathbf{5}$ | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 |
| $\mathbf{6}$ | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 |
| $\mathbf{7}$ | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 |
| $\mathbf{8}$ | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 |
| $\mathbf{9}$ | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 |
| $\mathbf{1 0}$ | 4.97 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 |
| $\mathbf{1 1}$ | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.10 |
| $\mathbf{1 2}$ | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 |
| $\mathbf{1 3}$ | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 |
| $\mathbf{1 4}$ | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 |
| $\mathbf{1 5}$ | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 |

Critical values of $F$ for the 0.01 significance level:

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 4052.19 | 4999.52 | 5403.34 | 5624.62 | 5763.65 | 5858.97 |
| $\mathbf{2}$ | 98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 |
| $\mathbf{3}$ | 34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 |
| $\mathbf{4}$ | 21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 |
| $\mathbf{5}$ | 16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 |
| $\mathbf{6}$ | 13.75 | 10.93 | 9.78 | 9.15 | 8.75 | 8.47 |
| $\mathbf{7}$ | 12.25 | 9.55 | 8.45 | 7.85 | 7.46 | 7.19 |
| $\mathbf{8}$ | 11.26 | 8.65 | 7.59 | 7.01 | 6.63 | 6.37 |
| $\mathbf{9}$ | 10.56 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 |
| $\mathbf{1 0}$ | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 |
| $\mathbf{1 1}$ | 9.65 | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 |
| $\mathbf{1 2}$ | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 |
| $\mathbf{1 3}$ | 9.07 | 6.40 | $\mathbf{5} .74$ | 5.21 | 4.86 | 4.62 |
| $\mathbf{1 4}$ | 8.86 | 6.52 | 5.56 | 5.04 | 4.70 | 4.46 |
| $\mathbf{1 5}$ | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 |

Figure 8.7.1 F-critical Table.
In order to read the F-critical values at the respective levels of significance, one must use the between groups degree of freedom along the row (horizontal) and then the within groups degree of freedom (df) along the column (vertical). The meeting points of these degrees of freedom on the table lies the F-critical values respectively for each chosen level of significance table.

Thus from the tables, the following are read as the F-critical values for the case being dealt with:

$$
F_{\text {critical }}(2,14 \text { dfand } 5 \%)=3.74 ; \text { and } F_{\text {critical }}(2,14 \text { dfand } 1 \%)=6.52
$$

Now we can complete the ANOVA table:
Table 8.7.2 Completed ANOVA Table.

| Sources of Variations | df | SS | MS | F-calc. | Fcrit at 5\% | Fcrit at 1\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Between groups | 2 | 0.13 | 0.07 | 0.10 | 3.74 | 6.52 |
| Within groups | 14 | 8.7 | 0.73 |  |  |  |
| Total | 14 | 8.83 |  |  |  |  |

Now the researcher can compare the F-calculated values with the F-critical values at both levels of significance to take the decision and make conclusions on the case.

It should however be noted that whenever F-calculated is greater than F-critical at stated degrees of freedom and a given level of significance $(\alpha)$, the p -value ( p -value $<\alpha$ ) would also be less than the chosen level of significance. The contrary also holds i.e. if F-calculated is lesser than F-critical, p-value ( p -value $>\alpha$ ) would be less than the chosen level of significance.

## Decision:

if $\mathrm{F}_{(\text {Calculated })}>\mathrm{F}_{\text {(Critical) }}$ at ( $5 \%$ or $1 \%, \mathrm{df}=2,14$ ); it means the performances of the students in the various programmes are significantly different.

However, if $\mathrm{F}_{\text {(Calculated) }}<\mathrm{F}_{\text {(Critical) }}$ (at $5 \%$ or $1 \%$, df=2, 14); it suggests that the performances of the students are not significantly different.

For the case understudy:

$$
\begin{aligned}
& \left.F_{\text {Calculated }}(0.10)<F_{\text {Critical }} \text { at } 5 \%, d f=2,14\right)=3.74 \\
& \left.F_{\text {Calculated }}(0.10)<F_{\text {Critical }} \text { (at } 1 \%, d f=2,14\right)=6.52
\end{aligned}
$$

Conclusion:

It can therefore be concluded that there is enough evidence presented by the data collected from the study that the performances of the students in the respective programmes are not significantly different or in other words are the same at both levels of significance.

## Table I: Chi-Square Probabilities

The areas given across the top are the areas to the right of the critical value. To look up an area on the left, subtract it from one, and then look it up (ie: 0.05 on the left is 0.95 on the right)

| Df | 0.995 | 0.99 | 0.975 | 0.95 | 0.90 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | --- | --- | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
| 2 | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
| 3 | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
| 4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 |
| 5 | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.070 | 12.833 | 15.086 | 16.750 |
| 6 | 0.676 | 0.872 | 1.237 | 1.635 | 2.204 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 |
| 7 | 0.989 | 1.239 | 1.690 | 2.167 | 2.833 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 |
| 8 | 1.344 | 1.646 | 2.180 | 2.733 | 3.490 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 |
| 9 | 1.735 | 2.088 | 2.700 | 3.325 | 4.168 | 14.684 | 16.919 | 19.023 | 21.666 | 23.589 |
| 10 | 2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 |
| 11 | 2.603 | 3.053 | 3.816 | 4.575 | 5.578 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757 |
| 12 | 3.074 | 3.571 | 4.404 | 5.226 | 6.304 | 18.549 | 21.026 | 23.337 | 26.217 | 28.300 |
| 13 | 3.565 | 4.107 | 5.009 | 5.892 | 7.042 | 19.812 | 22.362 | 24.736 | 27.688 | 29.819 |
| 14 | 4.075 | 4.660 | 5.629 | 6.571 | 7.790 | 21.064 | 23.685 | 26.119 | 29.141 | 31.319 |
| 15 | 4.601 | 5.229 | 6.262 | 7.261 | 8.547 | 22.307 | 24.996 | 27.488 | 30.578 | 32.801 |
| 16 | 5.142 | 5.812 | 6.908 | 7.962 | 9.312 | 23.542 | 26.296 | 28.845 | 32.000 | 34.267 |
| 17 | 5.697 | 6.408 | 7.564 | 8.672 | 10.085 | 24.769 | 27.587 | 30.191 | 33.409 | 35.718 |
| 18 | 6.265 | 7.015 | 8.231 | 9.390 | 10.865 | 25.989 | 28.869 | 31.526 | 34.805 | 37.156 |
| 19 | 6.844 | 7.633 | 8.907 | 10.117 | 11.651 | 27.204 | 30.144 | 32.852 | 36.191 | 38.582 |
| 20 | 7.434 | 8.260 | 9.591 | 10.851 | 12.443 | 28.412 | 31.410 | 34.170 | 37.566 | 39.997 |
| 21 | 8.034 | 8.897 | 10.283 | 11.591 | 13.240 | 29.615 | 32.671 | 35.479 | 38.932 | 41.401 |
| 22 | 8.643 | 9.542 | 10.982 | 12.338 | 14.041 | 30.813 | 33.924 | 36.781 | 40.289 | 42.796 |
| 23 | 9.260 | 10.196 | 11.689 | 13.091 | 14.848 | 32.007 | 35.172 | 38.076 | 41.638 | 44.181 |
| 24 | 9.886 | 10.856 | 12.401 | 13.848 | 15.659 | 33.196 | 36.415 | 39.364 | 42.980 | 45.559 |
| 25 | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382 | 37.652 | 40.646 | 44.314 | 46.928 |
| 26 | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 35.563 | 38.885 | 41.923 | 45.642 | 48.290 |
| 27 | 11.808 | 12.879 | 14.573 | 16.151 | 18.114 | 36.741 | 40.113 | 43.195 | 46.963 | 49.645 |
| 28 | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 37.916 | 41.337 | 44.461 | 48.278 | 50.993 |
| 29 | 13.121 | 14.256 | 16.047 | 17.708 | 19.768 | 39.087 | 42.557 | 45.722 | 49.588 | 52.336 |
| 30 | 13.787 | 14.953 | 16.791 | 18.493 | 20.599 | 40.256 | 43.773 | 46.979 | 50.892 | 53.672 |
| 40 | 20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 51.805 | 55.758 | 59.342 | 63.691 | 66.766 |
| 50 | 27.991 | 29.707 | 32.357 | 34.764 | 37.689 | 63.167 | 67.505 | 71.420 | 76.154 | 79.490 |
| 60 | 35.534 | 37.485 | 40.482 | 43.188 | 46.459 | 74.397 | 79.082 | 83.298 | 88.379 | 91.952 |
| 70 | 43.275 | 45.442 | 48.758 | 51.739 | 55.329 | 85.527 | 90.531 | 95.023 | 100.425 | 104.215 |
| 80 | 51.172 | 53.540 | 57.153 | 60.391 | 64.278 | 96.578 | 101.879 | 106.629 | 112.329 | 116.321 |
| 90 | 59.196 | 61.754 | 65.647 | 69.126 | 73.291 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299 |
| 100 | 67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 |

## Table II: Standard Normal (Z)

Area between 0 and z

|  | $0.00$ | $0.01$ | $0.02$ | $0.03$ | $0.04$ | $0.05$ | $0.06$ | $0.07$ | $0.08$ | $0.09$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0199 | 0.0239 | 0.0279 | 0.0319 | 0.0359 |
| 0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 | 0.0714 | 0.0753 |
| 0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987 | 0.1026 | 0.1064 | 0.1103 | 0.1141 |
| $0.3$ | $0.1179$ | $0.1217$ | $0.1255$ | $0.1293$ | $0.1331$ | $0.1368$ | $0.1406$ | 0.1443 | 0.1480 | $0.1517$ |
| 0.4 | $0.1554$ | $0.1591$ | $0.1628$ | $0.1664$ | $0.1700$ | 0.1736 | 0.1772 | 0.1808 | 0.1844 | $0.1879$ |
| 0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224 |
| 0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 | $0.2389$ | 0.2422 | 0.2454 | 0.2486 | 0.2517 | 0.2549 |
| 0.7 | $0.2580$ | $0.2611$ | $0.2642$ | $0.2673$ | $0.2704$ | $0.2734$ | $0.2764$ | $0.2794$ | $0.2823$ | $0.2852$ |
| 0.8 | $0.2881$ | $0.2910$ | $0.2939$ | $0.2967$ | $0.2995$ | $0.3023$ | $0.3051$ | $0.3078$ | 0.3106 | $0.3133$ |
| 0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 | 0.3264 | 0.3289 | 0.3315 | 0.3340 | 0.3365 | $0.3389$ |
| 1.0 | 0.3413 | 0.3438 | 0.3461 | 0.3485 | 0.3508 | 0.3531 | 0.3554 | 0.3577 | $0.3599$ | 0.3621 |
| 1.1 | 0.3643 | $0.3665$ | 0.3686 | $0.3708$ | 0.3729 | 0.3749 | 0.3770 | 0.3790 | 0.3810 | 0.3830 |
| 1.2 | $0.3849$ | $0.3869$ | $0.3888$ | $0.3907$ | $0.3925$ | $0.3944$ | $0.3962$ | $0.3980$ | $0.3997$ | $0.4015$ |
| $1.3$ | $0.4032$ | 0.4049 | $0.4066$ | 0.4082 | $0.4099$ | 0.4115 | 0.4131 | 0.4147 | 0.4162 | $0.4177$ |
| 1.4 | 0.4192 | 0.4207 | 0.4222 | 0.4236 | 0.4251 | 0.4265 | 0.4279 | 0.4292 | 0.4306 | $0.4319$ |
| 1.5 | $0.4332$ | $0.4345$ | $0.4357$ | $0.4370$ | $0.4382$ | $0.4394$ | $0.4406$ | $0.4418$ | $0.4429$ | $0.4441$ |
| 1.6 | $0.4452$ | $0.4463$ | 0.4474 | 0.4484 | 0.4495 | $0.4505$ | $0.4515$ | $0.4525$ | $0.4535$ | $0.4545$ |
| 1.7 | 0.4554 | 0.4564 | 0.4573 | 0.4582 | 0.4591 | 0.4599 | 0.4608 | 0.4616 | 0.4625 | $0.4633$ |
| 1.8 | 0.4641 | 0.4649 | 0.4656 | 0.4664 | 0.4671 | 0.4678 | 0.4686 | $0.4693$ | $0.4699$ | $0.4706$ |
| 1.9 | $0.4713$ | $0.4719$ | $0.4726$ | $0.4732$ | $0.4738$ | 0.4744 | $0.4750$ | $0.4756$ | $0.4761$ | $0.4767$ |
| 2.0 | $0.4772$ | $0.4778$ | $0.4783$ | $0.4788$ | $0.4793$ | $0.4798$ | $0.4803$ | $0.4808$ | $0.4812$ | $0.4817$ |
| 2.1 | 0.4821 | 0.4826 | 0.4830 | 0.4834 | 0.4838 | 0.4842 | 0.4846 | 0.4850 | 0.4854 | $0.4857$ |
| 2.2 | 0.4861 | 0.4864 | 0.4868 | 0.4871 | 0.4875 | 0.4878 | 0.4881 | 0.4884 | 0.4887 | $0.4890$ |
| 2.3 | 0.4893 | $0.4896$ | 0.4898 | $0.4901$ | 0.4904 | 0.4906 | 0.4909 | 0.4911 | 0.4913 | $0.4916$ |
| 2.4 | 0.4918 | $0.4920$ | 0.4922 | $0.4925$ | 0.4927 | $0.4929$ | $0.4931$ | $0.4932$ | $0.4934$ | $0.4936$ |
| 2.5 | 0.4938 | 0.4940 | 0.4941 | 0.4943 | 0.4945 | 0.4946 | 0.4948 | 0.4949 | 0.4951 | 0.4952 |
| 2.6 | 0.4953 | 0.4955 | 0.4956 | 0.4957 | 0.4959 | 0.4960 | 0.4961 | 0.4962 | 0.4963 | $0.4964$ |
| 2.7 | 0.4965 | 0.4966 | 0.4967 | 0.4968 | 0.4969 | 0.4970 | 0.4971 | $0.4972$ | $0.4973$ | $0.4974$ |
| 2.8 | 0.4974 | $0.4975$ | $0.4976$ | $0.4977$ | $0.4977$ | $0.4978$ | $0.4979$ | $0.4979$ | $0.4980$ | $0.4981$ |
| 2.9 | 0.4981 | 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | $0.4986$ |
| 3.0 | 0.4987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989 | 0.4989 | 0.4989 | 0.4990 | 0.4990 |

## Table III: Student's T Table

T Table With Right Tail Probabilities

| dflp | 0.40 | 0.25 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.324920 | 1.000000 | 3.077684 | 6.313752 | 12.70620 | 31.82052 | 63.65674 | 636.6192 |
| 2 | 0.288675 | 0.816497 | 1.885618 | 2.919986 | 4.30265 | 6.96456 | 9.92484 | 31.5991 |
| 3 | 0.276671 | 0.764892 | 1.637744 | 2.353363 | 3.18245 | 4.54070 | 5.84091 | 12.9240 |
| 4 | 0.270722 | 0.740697 | 1.533206 | 2.131847 | 2.77645 | 3.74695 | 4.60409 | 8.6103 |
| 5 | 0.267181 | 0.726687 | 1.475884 | 2.015048 | 2.57058 | 3.36493 | 4.03214 | 6.8688 |
| 6 | 0.264835 | 0.717558 | 1.439756 | 1.943180 | 2.44691 | 3.14267 | 3.70743 | 5.9588 |
| 7 | 0.263167 | 0.711142 | 1.414924 | 1.894579 | 2.36462 | 2.99795 | 3.49948 | 5.4079 |
| 8 | 0.261921 | 0.706387 | 1.396815 | 1.859548 | 2.30600 | 2.89646 | 3.35539 | 5.0413 |
| 9 | 0.260955 | 0.702722 | 1.383029 | 1.833113 | 2.26216 | 2.82144 | 3.24984 | 4.7809 |
| 10 | 0.260185 | 0.699812 | 1.372184 | 1.812461 | 2.22814 | 2.76377 | 3.16927 | 4.5869 |
| 11 | 0.259556 | 0.697445 | 1.363430 | 1.795885 | 2.20099 | 2.71808 | 3.10581 | 4.4370 |
| 12 | 0.259033 | 0.695483 | 1.356217 | 1.782288 | 2.17881 | 2.68100 | 3.05454 | 4.3178 |
| 13 | 0.258591 | 0.693829 | 1.350171 | 1.770933 | 2.16037 | 2.65031 | 3.01228 | 4.2208 |
| 14 | 0.258213 | 0.692417 | 1.345030 | 1.761310 | 2.14479 | 2.62449 | 2.97684 | 4.1405 |
| 15 | 0.257885 | 0.691197 | 1.340606 | 1.753050 | 2.13145 | 2.60248 | 2.94671 | 4.0728 |
| 16 | 0.257599 | 0.690132 | 1.336757 | 1.745884 | 2.11991 | 2.58349 | 2.92078 | 4.0150 |
| 17 | 0.257347 | 0.689195 | 1.333379 | 1.739607 | 2.10982 | 2.56693 | 2.89823 | 3.9651 |
| 18 | 0.257123 | 0.688364 | 1.330391 | 1.734064 | 2.10092 | 2.55238 | 2.87844 | 3.9216 |
| 19 | 0.256923 | 0.687621 | 1.327728 | 1.729133 | 2.09302 | 2.53948 | 2.86093 | 3.8834 |
| 20 | 0.256743 | 0.686954 | 1.325341 | 1.724718 | 2.08596 | 2.52798 | 2.84534 | 3.8495 |
| 21 | 0.256580 | 0.686352 | 1.323188 | 1.720743 | 2.07961 | 2.51765 | 2.83136 | 3.8193 |
| 22 | 0.256432 | 0.685805 | 1.321237 | 1.717144 | 2.07387 | 2.50832 | 2.81876 | 3.7921 |
| 23 | 0.256297 | 0.685306 | 1.319460 | 1.713872 | 2.06866 | 2.49987 | 2.80734 | 3.7676 |
| 24 | 0.256173 | 0.684850 | 1.317836 | 1.710882 | 2.06390 | 2.49216 | 2.79694 | 3.7454 |
| 25 | 0.256060 | 0.684430 | 1.316345 | 1.708141 | 2.05954 | 2.48511 | 2.78744 | 3.7251 |
| 26 | 0.255955 | 0.684043 | 1.314972 | 1.705618 | 2.05553 | 2.47863 | 2.77871 | 3.7066 |
| 27 | 0.255858 | 0.683685 | 1.313703 | 1.703288 | 2.05183 | 2.47266 | 2.77068 | 3.6896 |
| 28 | 0.255768 | 0.683353 | 1.312527 | 1.701131 | 2.04841 | 2.46714 | 2.76326 | 3.6739 |
| 29 | 0.255684 | 0.683044 | 1.311434 | 1.699127 | 2.04523 | 2.46202 | 2.75639 | 3.6594 |
| 30 | 0.255605 | 0.682756 | 1.310415 | 1.697261 | 2.04227 | 2.45726 | 2.75000 | 3.6460 |
| inf | 0.253347 | 0.674490 | 1.281552 | 1.644854 | 1.95996 | 2.32635 | 2.57583 | 3.2905 |

## Table IV: Chi-Square Table

| $\begin{gathered} \text { df\} } \\ {\text { area }} \end{gathered}$ | 0.995 | 0.99 | 0.975 | 0.95 | 0.9 | 0.75 | 0.5 | 0.25 | 0.1 | 0.05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.00004 | 0.00016 | 0.00098 | 0.00393 | 0.01579 | 0.10153 | 0.45494 | 1.3233 | 2.70554 | 3.84146 |
| 2 | 0.01003 | 0201 | 0.0506 | 0.10259 | 0.21072 | 0. | 9 | 2.77259 | 7 | 5.99146 |
| 3 | 0.07172 | 0.11483 | 0.2158 | 0.35185 | 0.58437 | 1.21253 | 2.36597 | 4.10834 | 6.25139 | 7.81473 |
| 4 | 0.206 | 0.2 | 0.48442 | 0.71072 | 1.06362 | 1.92256 | 3.35669 | 5.38527 | 7.77944 | 9.48773 |
| 5 | 0.4 | 0 | 0.8 | 1. |  | 2.6746 | 4.35146 | 8 | 6 |  |
| 6 | 0.67573 | 0.87209 | 1.23734 | 1.63538 | 2.20413 | 3.4546 | 5.34812 | 7.8408 | 10.64464 | 12.59159 |
| 7 | 0.98926 | 1.23904 | 1.68987 | 2.16735 | 2.83311 | 4.25485 | 6.34581 | 9.03715 | 12.01704 | . 06714 |
| 8 | 1.3 | 1.6465 | 2. | 2. | 3. | 5.07064 | 7.34412 | 10.21885 | 13.36157 | 31 |
| 9 | 1. | 2. | 2.70039 | 3.32511 | 4 | 5.89883 | 3 | 75 | 66 | 8 |
| 10 | 2.1558 | 2.5582 | 3. | 3 | 4. | 6.7372 | 9.34182 | 12.54886 | 8 | 704 |
| 11 | 2.60322 | 3.05348 | 3.81575 | 4.57481 | 5.57778 | 7.58414 | 10.341 | 13.70069 | 17.27501 | 9.67514 |
| 12 | 3.07382 | 3.5705 | 4.40 | 5.22603 | 6.3038 | 8.43842 | 11.34032 | 14.8454 | 18.54935 | 21.02607 |
| 13 | 3. | 4. | 5. | 5.89186 | 7. | 9.29907 | 6 |  | 19.81193 | 3 |
| 14 | 4.0746 | 4. | 5. | 6.57063 | 7. | 10.16531 | 13.33927 | 17.11693 | 21.06414 | 79 |
| 15 | 4.60092 | 5.22935 | 6.2621 | 7.26094 | 8.54676 | 11.03654 | 14.33886 | 18.245 | 22.3071 | 24.99579 |
| 16 | 5.14221 | 5.81221 | 6.90766 | 7.96165 | 9.3122 | 11.91222 | 15.3385 | 19.3688 | 23.54183 | 26.29623 |
| 17 | 5.69722 | 6 | 7.56419 | 67176 | 10.08519 | 12.79193 | 16 | 20.48868 | 24.76904 | .58711 |
| 18 | 6.2 |  | 8. | 9. | 10 | 13.67529 | 9 | 21.60489 |  | 93 |
| 19 | 6.84397 | 7.6327 | 8. | 10.11701 | 11.6509 | 14.562 | 18.33765 | 22.71781 | 7.20357 | 30.14353 |
| 20 | 7.4338 | 8.2604 | 9 | 10.85 | 12.44261 | 15.45177 | 19.33743 | 23.82 | 28.41198 | . 41043 |
| 21 | 8.03365 | 8.8972 | 10.282 | 11.5913 | 13.239 | 16.34438 | 20.33723 | 24.93478 | 29.61509 | . 67057 |
| 22 | 8.64272 | 9.54 | 10.982 | 12.33801 | 14.04149 | 17 | 21.33704 | 26.03927 | 30.813 | 44 |
| 23 | 9.26042 | 10.19572 | 11.688 | 13.090 | 14.8479 | 18.1373 | 22.3368 | . 14 | 32.0069 | 35.17246 |
| 24 | 9.88623 | 10.85636 | 12.4011 | 13.84843 | 15.65868 | 19.03725 | 23.33673 | 28.241 | 33.1962 | 36.41503 |
| 25 | 10.51965 | 11.52398 | 13.1197 | 14.6114 | 16.4734 | 19.9393 | 24.33659 | 29.338 | 34.38159 | 37.65248 |
| 26 | 11.1602 | 12.19815 | 13.8439 | 15.37916 | 17.2918 | 20.8434 | 25.33646 | . 43 | 35.56317 | 38.88514 |
| 27 | 11.8075 | 12.8785 | 14.57338 | 16.1514 | 18.1139 | 21.7494 | 26.3363 | 31.528 | 36.7412 | 0.11327 |
| 28 | 12.46134 | 13.56471 | 15.30786 | 16.92788 | 18.9392 | 22.65716 | 27.33623 | 32.6204 | 37.915 | 1.33714 |
| 29 | 13.12115 | 14.25645 | 16.04707 | 17.70837 | 19.7677 | 23.56659 | 28.33613 | 33.7109 | 39.087 | 42.55697 |
| 30 | 13.78672 | 14.95346 | 16.79077 | 18.49266 | 20.59923 | 24.47761 | 29.33603 | 34.79974 | 40.25602 | 43.77297 |

## Table V: F Distribution Tables

F - Table for alpha $=0.10$

| df2/df1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 39.86 | 49.50 | 53.59 | 55.83 | 57.24 | 58.20 | 58.91 | 59.44 | 59.86 | 60.19 | 60.71 | 61.22 | 61.74 |
| 2 | 8.53 | 9.00 | 9.16 | 9.24 | 9.29 | 9.33 | 9.35 | 9.37 | 9.38 | 9.39 | 9.41 | 9.42 | 9.44 |
| 3 | 5.54 | 5.46 | 5.39 | 5.34 | 5.31 | 5.28 | 5.27 | 5.25 | 5.24 | 5.23 | 5.22 | 5.20 | 5.18 |
| 4 | 4.54 | 4.32 | 4.19 | 4.11 | 4.05 | 4.01 | 3.98 | 3.95 | 3.94 | 3.92 | 3.90 | 3.87 | 3.84 |
| 5 | 4.06 | 3.78 | 3.62 | 3.52 | 3.45 | 3.40 | 3.37 | 3.34 | 3.32 | 3.30 | 3.27 | 3.24 | 3.21 |
| 6 | 3.78 | 3.46 | 3.29 | 3.18 | 3.11 | 3.05 | 3.01 | 2.98 | 2.96 | 2.94 | 2.90 | 2.87 | 2.84 |
| 7 | 3.59 | 3.26 | 3.07 | 2.96 | 2.88 | 2.83 | 2.78 | 2.75 | 2.72 | 2.70 | 2.67 | 2.63 | 2.59 |
| 8 | 3.46 | 3.11 | 2.92 | 2.81 | 2.73 | 2.67 | 2.62 | 2.59 | 2.56 | 2.54 | 2.50 | 2.46 | 2.42 |
| 9 | 3.36 | 3.01 | 2.81 | 2.69 | 2.61 | 2.55 | 2.51 | 2.47 | 2.44 | 2.42 | 2.38 | 2.34 | 2.30 |
| 10 | 3.29 | 2.92 | 2.73 | 2.61 | 2.52 | 2.46 | 2.41 | 2.38 | 2.35 | 2.32 | 2.28 | 2.24 | 2.20 |
| 11 | 3.23 | 2.86 | 2.66 | 2.54 | 2.45 | 2.39 | 2.34 | 2.30 | 2.27 | 2.25 | 2.21 | 2.17 | 2.12 |
| 12 | 3.18 | 2.81 | 2.61 | 2.48 | 2.39 | 2.33 | 2.28 | 2.24 | 2.21 | 2.19 | 2.15 | 2.10 | 2.06 |
| 13 | 3.14 | 2.76 | 2.56 | 2.43 | 2.35 | 2.28 | 2.23 | 2.20 | 2.16 | 2.14 | 2.10 | 2.05 | 2.01 |
| 14 | 3.10 | 2.73 | 2.52 | 2.39 | 2.31 | 2.24 | 2.19 | 2.15 | 2.12 | 2.10 | 2.05 | 2.01 | 1.96 |
| 15 | 3.07 | 2.70 | 2.49 | 2.36 | 2.27 | 2.21 | 2.16 | 2.12 | 2.09 | 2.06 | 2.02 | 1.97 | 1.92 |
| 16 | 3.05 | 2.67 | 2.46 | 2.33 | 2.24 | 2.18 | 2.13 | 2.09 | 2.06 | 2.03 | 1.99 | 1.94 | 1.89 |
| 17 | 3.03 | 2.64 | 2.44 | 2.31 | 2.22 | 2.15 | 2.10 | 2.06 | 2.03 | 2.00 | 1.96 | 1.91 | 1.86 |
| 18 | 3.01 | 2.62 | 2.42 | 2.29 | 2.20 | 2.13 | 2.08 | 2.04 | 2.00 | 1.98 | 1.93 | 1.89 | 1.84 |
| 19 | 2.99 | 2.61 | 2.40 | 2.27 | 2.18 | 2.11 | 2.06 | 2.02 | 1.98 | 1.96 | 1.91 | 1.86 | 1.81 |
| 20 | 2.97 | 2.59 | 2.38 | 2.25 | 2.16 | 2.09 | 2.04 | 2.00 | 1.96 | 1.94 | 1.89 | 1.84 | 1.79 |
| 21 | 2.96 | 2.57 | 2.36 | 2.23 | 2.14 | 2.08 | 2.02 | 1.98 | 1.95 | 1.92 | 1.87 | 1.83 | 1.78 |
| 22 | 2.95 | 2.56 | 2.35 | 2.22 | 2.13 | 2.06 | 2.01 | 1.97 | 1.93 | 1.90 | 1.86 | 1.81 | 1.76 |
| 23 | 2.94 | 2.55 | 2.34 | 2.21 | 2.11 | 2.05 | 1.99 | 1.95 | 1.92 | 1.89 | 1.84 | 1.80 | 1.74 |
| 24 | 2.93 | 2.54 | 2.33 | 2.19 | 2.10 | 2.04 | 1.98 | 1.94 | 1.91 | 1.88 | 1.83 | 1.78 | 1.73 |
| 25 | 2.92 | 2.53 | 2.32 | 2.18 | 2.09 | 2.02 | 1.97 | 1.93 | 1.89 | 1.87 | 1.82 | 1.77 | 1.72 |
| 26 | 2.91 | 2.52 | 2.31 | 2.17 | 2.08 | 2.01 | 1.96 | 1.92 | 1.88 | 1.86 | 1.81 | 1.76 | 1.71 |
| 27 | 2.90 | 2.51 | 2.30 | 2.17 | 2.07 | 2.00 | 1.95 | 1.91 | 1.87 | 1.85 | 1.80 | 1.75 | 1.70 |
| 28 | 2.89 | 2.50 | 2.29 | 2.16 | 2.06 | 2.00 | 1.94 | 1.90 | 1.87 | 1.84 | 1.79 | 1.74 | 1.69 |
| 29 | 2.89 | 2.50 | 2.28 | 2.15 | 2.06 | 1.99 | 1.93 | 1.89 | 1.86 | 1.83 | 1.78 | 1.73 | 1.68 |
| 30 | 2.88 | 2.49 | 2.28 | 2.14 | 2.05 | 1.98 | 1.93 | 1.88 | 1.85 | 1.82 | 1.77 | 1.72 | 1.67 |
| 40 | 2.84 | 2.44 | 2.23 | 2.09 | 2.00 | 1.93 | 1.87 | 1.83 | 1.79 | 1.76 | 1.71 | 1.66 | 1.61 |

## F -Table for alpha $=0.05$

| df2/df1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 243.91 | 245.95 |
| 2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.41 | 19.43 |
| 3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.74 | 8.70 |
| 4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.91 | 5.86 |
| 5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.68 | 4.62 |
| 6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.00 | 3.94 |
| 7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.57 | 3.51 |
| 8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.28 | 3.22 |
| 9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.07 | 3.01 |
| 10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.91 | 2.85 |
| 11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 | 2.79 | 2.72 |
| 12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.69 | 2.62 |
| 13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 | 2.60 | 2.53 |
| 14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 | 2.53 | 2.46 |
| 15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.48 | 2.40 |
| 16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 | 2.42 | 2.35 |
| 17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 | 2.38 | 2.31 |
| 18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 | 2.34 | 2.27 |
| 19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 | 2.31 | 2.23 |
| 20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.28 | 2.20 |
| 21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 | 2.25 | 2.18 |
| 22 | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 | 2.34 | 2.30 | 2.23 | 2.15 |
| 23 | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 | 2.27 | 2.20 | 2.13 |
| 24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 | 2.18 | 2.11 |
| 25 | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 | 2.28 | 2.24 | 2.16 | 2.09 |
| 26 | 4.23 | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 | 2.27 | 2.22 | 2.15 | 2.07 |
| 27 | 4.21 | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 | 2.25 | 2.20 | 2.13 | 2.06 |
| 28 | 4.20 | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 | 2.24 | 2.19 | 2.12 | 2.04 |
| 29 | 4.18 | 3.33 | 2.93 | 2.70 | 2.55 | 2.43 | 2.35 | 2.28 | 2.22 | 2.18 | 2.10 | 2.03 |
| 30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 2.09 | 2.01 |
| 40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 2.00 | 1.92 |
| 60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.92 | 1.84 |
| 120 | 3.92 | 3.07 | 2.68 | 2.45 | 2.29 | 2.18 | 2.09 | 2.02 | 1.96 | 1.91 | 1.83 | 1.75 |

F-Table for alpha $=0.025$

| df2/df1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 647.79 | 799.50 | 864.16 | 899.58 | 921.85 | 937.11 | 948.22 | 956.66 | 963.28 | 968.63 | 976.71 | 984.87 |
| 2 | 38.51 | 39.00 | 39.17 | 39.25 | 39.30 | 39.33 | 39.36 | 39.37 | 39.39 | 39.40 | 39.41 | 39.43 |
| 3 | 17.44 | 16.04 | 15.44 | 15.10 | 14.88 | 14.73 | 14.62 | 14.54 | 14.47 | 14.42 | 14.34 | 14.25 |
| 4 | 12.22 | 10.65 | 9.98 | 9.60 | 9.36 | 9.20 | 9.07 | 8.98 | 8.90 | 8.84 | 8.75 | 8.66 |
| 5 | 10.01 | 8.43 | 7.76 | 7.39 | 7.15 | 6.98 | 6.85 | 6.76 | 6.68 | 6.62 | 6.52 | 6.43 |
| 6 | 8.81 | 7.26 | 6.60 | 6.23 | 5.99 | 5.82 | 5.70 | 5.60 | 5.52 | 5.46 | 5.37 | 5.27 |
| 7 | 8.07 | 6.54 | 5.89 | 5.52 | 5.29 | 5.12 | 4.99 | 4.90 | 4.82 | 4.76 | 4.67 | 4.57 |
| 8 | 7.57 | 6.06 | 5.42 | 5.05 | 4.82 | 4.65 | 4.53 | 4.43 | 4.36 | 4.30 | 4.20 | 4.10 |
| 9 | 7.21 | 5.71 | 5.08 | 4.72 | 4.48 | 4.32 | 4.20 | 4.10 | 4.03 | 3.96 | 3.87 | 3.77 |
| 10 | 6.94 | 5.46 | 4.83 | 4.47 | 4.24 | 4.07 | 3.95 | 3.85 | 3.78 | 3.72 | 3.62 | 3.52 |
| 11 | 6.72 | 5.26 | 4.63 | 4.28 | 4.04 | 3.88 | 3.76 | 3.66 | 3.59 | 3.53 | 3.43 | 3.33 |
| 12 | 6.55 | 5.10 | 4.47 | 4.12 | 3.89 | 3.73 | 3.61 | 3.51 | 3.44 | 3.37 | 3.28 | 3.18 |
| 13 | 6.41 | 4.97 | 4.35 | 4.00 | 3.77 | 3.60 | 3.48 | 3.39 | 3.31 | 3.25 | 3.15 | 3.05 |
| 14 | 6.30 | 4.86 | 4.24 | 3.89 | 3.66 | 3.50 | 3.38 | 3.29 | 3.21 | 3.15 | 3.05 | 2.95 |
| 15 | 6.20 | 4.77 | 4.15 | 3.80 | 3.58 | 3.41 | 3.29 | 3.20 | 3.12 | 3.06 | 2.96 | 2.86 |
| 16 | 6.12 | 4.69 | 4.08 | 3.73 | 3.50 | 3.34 | 3.22 | 3.12 | 3.05 | 2.99 | 2.89 | 2.79 |
| 17 | 6.04 | 4.62 | 4.01 | 3.66 | 3.44 | 3.28 | 3.16 | 3.06 | 2.98 | 2.92 | 2.82 | 2.72 |
| 18 | 5.98 | 4.56 | 3.95 | 3.61 | 3.38 | 3.22 | 3.10 | 3.01 | 2.93 | 2.87 | 2.77 | 2.67 |
| 19 | 5.92 | 4.51 | 3.90 | 3.56 | 3.33 | 3.17 | 3.05 | 2.96 | 2.88 | 2.82 | 2.72 | 2.62 |
| 20 | 5.87 | 4.46 | 3.86 | 3.51 | 3.29 | 3.13 | 3.01 | 2.91 | 2.84 | 2.77 | 2.68 | 2.57 |
| 21 | 5.83 | 4.42 | 3.82 | 3.48 | 3.25 | 3.09 | 2.97 | 2.87 | 2.80 | 2.73 | 2.64 | 2.53 |
| 22 | 5.79 | 4.38 | 3.78 | 3.44 | 3.22 | 3.05 | 2.93 | 2.84 | 2.76 | 2.70 | 2.60 | 2.50 |
| 23 | 5.75 | 4.35 | 3.75 | 3.41 | 3.18 | 3.02 | 2.90 | 2.81 | 2.73 | 2.67 | 2.57 | 2.47 |
| 24 | 5.72 | 4.32 | 3.72 | 3.38 | 3.15 | 2.99 | 2.87 | 2.78 | 2.70 | 2.64 | 2.54 | 2.44 |
| 25 | 5.69 | 4.29 | 3.69 | 3.35 | 3.13 | 2.97 | 2.85 | 2.75 | 2.68 | 2.61 | 2.51 | 2.41 |
| 26 | 5.66 | 4.27 | 3.67 | 3.33 | 3.10 | 2.94 | 2.82 | 2.73 | 2.65 | 2.59 | 2.49 | 2.39 |
| 27 | 5.63 | 4.24 | 3.65 | 3.31 | 3.08 | 2.92 | 2.80 | 2.71 | 2.63 | 2.57 | 2.47 | 2.36 |
| 28 | 5.61 | 4.22 | 3.63 | 3.29 | 3.06 | 2.90 | 2.78 | 2.69 | 2.61 | 2.55 | 2.45 | 2.34 |
| 29 | 5.59 | 4.20 | 3.61 | 3.27 | 3.04 | 2.88 | 2.76 | 2.67 | 2.59 | 2.53 | 2.43 | 2.32 |
| 30 | 5.57 | 4.18 | 3.59 | 3.25 | 3.03 | 2.87 | 2.75 | 2.65 | 2.57 | 2.51 | 2.41 | 2.31 |
| 40 | 5.42 | 4.05 | 3.46 | 3.13 | 2.90 | 2.74 | 2.62 | 2.53 | 2.45 | 2.39 | 2.29 | 2.18 |
| 60 | 5.29 | 3.93 | 3.34 | 3.01 | 2.79 | 2.63 | 2.51 | 2.41 | 2.33 | 2.27 | 2.17 | 2.06 |
| 120 | 5.15 | 3.80 | 3.23 | 2.89 | 2.67 | 2.52 | 2.39 | 2.30 | 2.22 | 2.16 | 2.05 | 1.95 |
| Inf | 5.02 | 3.69 | 3.12 | 2.79 | 2.57 | 2.41 | 2.29 | 2.19 | 2.11 | 2.05 | 1.94 | 1.83 |

F-Table for alpha $=0.01$

| $\mathbf{d f 2} \mathbf{2 f f 1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 4052.18 | 4999.50 | 5403.35 | 5624.58 | 5763.65 | 5858.99 | 5928.36 | 5981.07 | 6022.47 | 6055.85 | 6106.32 |
| 2 | 98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 | 99.36 | 99.37 | 99.39 | 99.40 | 99.42 |
| $\mathbf{3}$ | 34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 | 27.67 | 27.49 | 27.35 | 27.23 | 27.05 |
| 4 | 21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 | 14.98 | 14.80 | 14.66 | 14.55 | 14.37 |
| 5 | 16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 | 10.46 | 10.29 | 10.16 | 10.05 | 9.89 |
| 6 | 13.75 | 10.93 | 9.78 | 9.15 | 8.75 | 8.47 | 8.26 | 8.10 | 7.98 | 7.87 | 7.72 |
| 7 | 12.25 | 9.55 | 8.45 | 7.85 | 7.46 | 7.19 | 6.99 | 6.84 | 6.72 | 6.62 | 6.47 |
| 8 | 11.26 | 8.65 | 7.59 | 7.01 | 6.63 | 6.37 | 6.18 | 6.03 | 5.91 | 5.81 | 5.67 |
| 9 | 10.56 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.61 | 5.47 | 5.35 | 5.26 | 5.11 |
| 10 | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 | 4.94 | 4.85 | 4.71 |
| 11 | 9.65 | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 | 4.89 | 4.74 | 4.63 | 4.54 | 4.40 |
| 12 | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 | 4.39 | 4.30 | 4.16 |
| 13 | 9.07 | 6.70 | 5.74 | 5.21 | 4.86 | 4.62 | 4.44 | 4.30 | 4.19 | 4.10 | 3.96 |
| 14 | 8.86 | 6.52 | 5.56 | 5.04 | 4.70 | 4.46 | 4.28 | 4.14 | 4.03 | 3.94 | 3.80 |
| 15 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.90 | 3.81 | 3.67 |
| 16 | 8.53 | 6.23 | 5.29 | 4.77 | 4.44 | 4.20 | 4.03 | 3.89 | 3.78 | 3.69 | 3.55 |
| 17 | 8.40 | 6.11 | 5.19 | 4.67 | 4.34 | 4.10 | 3.93 | 3.79 | 3.68 | 3.59 | 3.46 |
| 18 | 8.29 | 6.01 | 5.09 | 4.58 | 4.25 | 4.02 | 3.84 | 3.71 | 3.60 | 3.51 | 3.37 |
| 19 | 8.19 | 5.93 | 5.01 | 4.50 | 4.17 | 3.94 | 3.77 | 3.63 | 3.52 | 3.43 | 3.30 |
| 20 | 8.10 | 5.85 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 | 3.46 | 3.37 | 3.23 |
| 21 | 8.02 | 5.78 | 4.87 | 4.37 | 4.04 | 3.81 | 3.64 | 3.51 | 3.40 | 3.31 | 3.17 |
| 22 | 7.95 | 5.72 | 4.82 | 4.31 | 3.99 | 3.76 | 3.59 | 3.45 | 3.35 | 3.26 | 3.12 |
| 23 | 7.88 | 5.66 | 4.77 | 4.26 | 3.94 | 3.71 | 3.54 | 3.41 | 3.30 | 3.21 | 3.07 |
| 24 | 7.82 | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 | 3.26 | 3.17 | 3.03 |
| 25 | 7.77 | 5.57 | 4.68 | 4.18 | 3.86 | 3.63 | 3.46 | 3.32 | 3.22 | 3.13 | 2.99 |
| 26 | 7.72 | 5.53 | 4.64 | 4.14 | 3.82 | 3.59 | 3.42 | 3.29 | 3.18 | 3.09 | 2.96 |
| 27 | 7.68 | 5.49 | 4.60 | 4.11 | 3.79 | 3.56 | 3.39 | 3.26 | 3.15 | 3.06 | 2.93 |
| 28 | 7.64 | 5.45 | 4.57 | 4.07 | 3.75 | 3.53 | 3.36 | 3.23 | 3.12 | 3.03 | 2.90 |
| 29 | 7.60 | 5.42 | 4.54 | 4.05 | 3.73 | 3.50 | 3.33 | 3.20 | 3.09 | 3.01 | 2.87 |
| 30 | 7.56 | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 | 3.07 | 2.98 | 2.84 |
| 40 | 7.31 | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.89 | 2.80 | 2.67 |
| 60 | 7.08 | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 | 2.63 | 2.50 |
| 120 | 6.85 | 4.79 | 3.95 | 3.48 | 3.17 | 2.96 | 2.79 | 2.66 | 2.56 | 2.47 | 2.34 |
| inf | 6.64 | 4.61 | 3.78 | 3.32 | 3.02 | 2.80 | 2.64 | 2.51 | 2.41 | 2.32 | 2.19 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

## Table VI: Standard Normal (Z) Table

Values in the table represent areas under the curve to the left of $Z$ quantiles along the margins.

| Z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | $0.7257$ | $0.7291$ | $0.7324$ | 0.7357 | $0.7389$ | $0.7422$ | 0.7454 | 0.7486 | $0.7517$ | $0.7549$ |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0. | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | $0.8389$ |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1. | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | $0.8849$ | $0.8869$ | $0.8888$ | 0.8907 | $0.8925$ | 0.8944 | 0.8962 | 0.8980 | 0.8997 | $0.9015$ |
| 1. | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | $0.9192$ | $0.9207$ | 0.9222 | $0.9236$ | $0.9251$ | $0.9265$ | 0.9279 | 0.9292 | $0.9306$ | $0.9319$ |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | $0.9564$ | 0.9573 | 0.9582 | $0.9591$ | $0.9599$ | 0.9608 | $0.9616$ | $0.9625$ | $0.9633$ |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | $0.9778$ | 0.9783 | 0.9788 | $0.9793$ | 0.9798 | 0.9803 | 0.9808 | 0.9812 | $0.9817$ |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | $0.9861$ | $0.9864$ | 0.9868 | 0.9871 | $0.9875$ | 0.9878 | 0.9881 | 0.9884 | 0.9887 | $0.9890$ |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | $0.9938$ | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | $0.9952$ |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | $0.9965$ | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | $0.9981$ |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |

## Bibliography

[1] Anders, M. E. (1975). Statistical Information as a Basis for Cooperative Planning. Library Trends, 24: 229-244.
[2] Berdie, D. R., Anderson, J. F. (1974) Questionnaires: Design and Use. Metuchen, New Jersey, Scarecrow.
[3] Bruning, J. L., Kintz, B. L. (1977). Computational Handbook of Statistics. 2nd ed. Glenview, Illinois, Scott, Foresman.
[4] Childers, T. A. (1975). Statistics That Describe Libraries and Library Service. In: Voigt, M. J., ed.: Advances in Librarianship. New York, Academic Press.
[5] McHugh, M. L. (2003). Descriptive statistics, part I: level of measurement. JSPN, 8: 35-37.
[6] Norton, H. W. (1976). Review of Basic Statistics for Librarians, by I. S. Simpson. Newsletter on Library Research, 18: 8-10.
[7] Overholser, B. R., Sowinski, K. M. (2007). Biostatistics primer: part I. Nutr Clin Pract. 22: 629-635.
[8] Simpson, I. S. (1975). Basic Statistics for Librarians. London, Clive Bingley.
[9] Wallis, W. A., Roberts, H. V. (1956). Statistics: A New Approach. Glencoe, Illinois, Free Press.

