
 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Research Controllability and Dynamics of 

Movement Singularly Perturbed System 
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In this chapter is formulated the criterion of controllability using properties of 

the operator Gramm, and to deal with the evaluation of the standard deviation of 

the trajectory of motion of the system. 

2.1  Controllability Singularly Perturbed Systems of 

Optimal Control with Constantly Acting  

External Forces 

Here is investigated the properties of controllability of the system (2.1.1) with 

the help of operator Gram transforming infinite space in finite. Let the 

controlled process is described by the equation 

     , , , ,y A t y B t u f t                            (2.1.1) 

  0

0 ,y t y                                         
 
(2.1.2) 

  1

1,y t y                                          (2.1.3) 

where  
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n mR 
nx R , 

mz R - state vectors,  0 1, ,kn C t t  

(  0 1,kC t t  infinite space),    1 2,n mf t R f t R   constantly operating 

outside forces;  0 1, , 0t t t     small parameter  0 1 .   

States    , , ,x x t z z t    are slow and fast motion of the system 

(2.1.1), respectively. We assume the following assumptions regarding the 

parameters of the system (2.1.1): 
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1. Matrix    1,4iA t i   - identified uniformly bounded and uniformly 

continuous with their derivatives. 

2. All eigenvalues of the matrix  4A t  have negative real parts for all 

 0 1, .t t t  

For linear systems usually criterion controllability are formulated using the 

properties of a linear operator [4]. 

First, consider the simplest case when the matrix  ,A t   in the equation of 

the system (2.1.1) is equal to zero matrix. Then the dynamics of the system 

described by the equation
 

   , ,y B t u f t   .                                    (2.1.4) 

We pose the problem of the choice of control    ,u t u t  , which would 

ensure at the time satisfy the boundary conditions (2.1.3). Considering the 

conditions (2.1.2), (2.1.3) from the equation of motion (2.1.4) obtain the 

     
1 1

0 0

1 0 , , , .

t t

t t

y y B t u s ds f s ds                      (2.1.5) 

Then the expression      
1

0

, ,

t

t

L u B t u t dt    can be viewed as a linear 

operator acting from the space  0 1

mC t t  to 
n mR 

. Because is required choose 

the control  ,u t  , which would satisfy the condition (2.1.5), it is easy to see, 

that if  
1

0

1 0 ,

t

t

y y f s ds    lies in the region of the operator  L u , then the 

desired transition to the state   1

1y t y  available. Otherwise - is not. Therefore, 
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to check whether state-controlled necessary to establish, whether it is in the 

region values of the operator  L u . 

Control    ,u t u t  , which transfers status of the system (2.1.4) from 0y  

at 
0t t  to 1y  exists only when the vector  

1

0

1 0 ,

t

t

y y f s ds    lies in the 

region values of a linear transformation 

     
1

0

0 1, , , ' ,

t

t

W t t B s B s ds                          (2.1.6) 

At one of the controls that translates system from one state into another and 

has the form: 

   , ,u t B t                                        (2.1.7) 

where η is any solution of the equation 

   
1

0

1 0

0 1, , ,

t

t

W t t y y f s ds      .                      (2.1.8) 

Now we move to a system of general form (2.1.1) when  , 0.A t    

Integrating the equations of motion of the system (2.1.1) gives 

             
1 1

0 0

0

0, , , , , , , , , , ,

t t

t t

y t Y t t y Y t s B s u s ds Y t s f s ds            (2.1.9) 

where  , ,Y t s   - transition matrix for the equation 

 , ,y A t y   0

0 ,y t y                                     
 
(2.1.10) 

At 1t t , taking into account (2.1.3) from (2.1.9) we will have equation of 

moment [42]. 
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1

0

0 , , , ,

t

t

Y t s B s u s ds                                (2.1.11) 

where        
1

0

0

0 1 0, , , , , .

t

t

y Y t t y Y t s f s ds         

Theorem 2.1.1. For system (2.1.1) if and only if exists a control 

   ,u t u t  , which transfers from state of the system (2.1.2) to the state 

(2.1.3) at 1 0 ,t t t   when the vector     belongs in the field of the values of 

the linear transformation 

         
1

0

0 1 0 0, , , , , , , ,

t

t

W t t Y t s B s B s Y t s ds      .         (2.1.12) 

At that control 

     0 1 *, , , ,u t B s Y t t y                                     (2.1.13) 

is one of the controls to ensure this transition, where the vector *y  is determined 

from the equation 

   0 1 *, , .W t t y                                  (2.1.14) 

Proof. We introduce the change of variable 

     0, , , , .t Y t t y t                              (2.1.15) 

Then by the properties of the transition matrix will be 

     0, , , , ,y t Y t t t     

       

           

0 0

0

, , , , , ,

, , , , , , ,

Y t t t Y t t t

A t Y t t t B t u t f t
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or 

         0, , , , , , .Y t t t B t u t f t        

Multiplying this equality on the left to matrix  0 , ,Y t t   obtain the 

           0 0, , , , , , , .t Y t t B t u t Y t t f t                  (2.1.16) 

If reasoning as in the previous case, control  ,tu  exists if and only if the 

set of values that can take the 

       
1

0

1 0 0, , , , ,

t

t

t t Y t s f s ds         

belongs to the region of values of operator 

         
1

0

0 1 0 0, , , , , ' , , , .

t

t

W t t Y t s B s B s Y t s ds               (2.1.17) 

Then the desired transition is possible, if we to require that there has been a 

       

       

1

0

1

0

1 0 0

1 0

0 1 0

, , , , ,

, , , , , .

t

t

t

t

t t Y t s f s ds

Y t t y y Y t s f t ds

     

    

 

    





 

This means that the desired transformation is possible if and only if the vector 

    for each 0   lies in the region values  0 1, ,W t t    and one of the 

control providing this transformation is a control (2.1.13), q.e.d. 

It follows from this theorem that if 0 1   and a 0t  for all 1t  matrix 

 0 1, ,W t t   has maximal rank, then the system (2.1.1) is completely 
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controllable. Matrix  0 1, ,W t t   in shape (2.1.12) at 0   has the following 

properties [65]: it is symmetric, non-negative, defined for 
1 0t t  and satisfies: 

а) matrix differential equation 

             

 

1 1

1 1

, , , , , , , , , , ,

, , 0

W t t A t W t t W t t A t B t B t

W t t

      



   


     (2.1.18) 

b) functional equation 

         0 1 0 0 1 0, , , , , , , , ' , , .W t t W t t Y t t W t t Y t t             (2.1.19) 

If we introduce in the form of a block matrix 

 
1 1 2 1

1 '

2 1 3 1

( , , ) ( , , )

, , ,1
( , , ) ( , , )

W t t W t t

W t t
W t t W t t

 


 



 
 


 
 
 

                 (2.1.20) 

then the equation (2.1.18) can be rewritten as a system of three linear singularly 

perturbed equations are not separated variables: 

           ' ' ' '

1 1 1 2 2 1 1 2 2 1 ,W A t W A t W W A t W A t B t B t      

           ' ' '

2 1 2 2 3 1 3 2 4 1 2 ,W A t W A t W W A t W A t B t B t          (2.1.21) 

           ' ' ' '

3 3 2 4 3 2 3 3 4 2 2 ,W A t W A t W W A t W A t B t B t        

 1 1 1, , 0W t t   ,  2 1 1, , 0W t t   ,  1 1 1, , 0W t t             (2.1.22) 

Theorem 2.1.2. Let matrix    , , ,H H t N N t    are solutions of 

differential equations 

        1 2 3 4 0H H A t A t H A t A t H       ,             (2.1.23) 

           1 2 4 2 2 0N H A t A t H N N A t HA t A t        .  (2.1.24) 
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Then the matrix 

         
1

1, , , , , , , ,

t

t

W t t G t s B s B s G t s ds                     (2.1.25) 

satisfies the matrix differential equation 

       1 1, , , , ,W A t W WA t B t B t                      (2.1.26) 

where 

          1, , , , , ,A t M t A t M t M t                  (2.1.27) 

     1, , , ,B t M t B t    

 
( , )

, ,
( , ) ( , ) ( , )

n

m

E N t
M t

H t E H t N t

 


   

 
  

 

 
 

 

, , 0
, , ,

0 , ,

t s
G t s

t s






 
  
  

 

   , , , , ,t s t s     transition matrices of homogeneous equations: 

             1 2 4 2, , ,x A t A t H t x z A t H t A t z        respectively. 

Proof. In the matrix equation (2.1.18) we introduce the change of variables in 

the form of 

   , , .W M t WM t                            (2.1.28) 

Then in view of (2.1.28) from (2.1.18) we have 

,MWM MWM MWM AMWM MWM A BB            

    .MWM AM M WM MW M A M BB           
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Multiplying the left by the matrix 
1M 
 and the right to 

1M   we obtain the 

equation (2.1.26). When the condition of the theorem matrix 

          1, , , , ,A t M t A t M t M t       

is a diagonal block matrix, i.e. 

 
1 2

4 2

( ) ( ) ( , ) 0

, 1
0 ( ( ) ( , ) ( ))

A t A t H t

A t
A t H t A t




 



 
 


  
 

. 

We calculate the derivative of the function  1, ,W t t   by t  

       

             

1

1

, , , , , ,

, , , , , , , , ,

t

t

t

t

d
W G t s B s B s G t s ds

dt

B t B t A t G t s B s B s G t s ds

   

      

 
    

 

    




 

         

       

1

, , , , ' , , ,

, , , ,

t

t

G t s B s B s G t s dsA t

A t W WA t B t B t

    

   

 

   


  

q.e.d. 

As in the previous case, if you enter the block matrix 

 
1 1 2 1

1

2 1 3 1

( , , ) ( , , )

, , ,1
( , , ) ( , ,

W t t W t t

W t t
W t t W t t

 


 



 
 

   
 

 

then the equation (2.1.26) can be rewritten as a system of singularly perturbed 

three equations with separated variables 

       1 1 1 1 1 1 1, , , , ,W A t W W A t B t B t        
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       2 1 2 2 4 1 2, , , , ,W A t W W A t B t B t                    (2.1.29) 

       3 4 3 3 4 2 2, , , , ,W A t W W A t B t B t         

with the final conditions 

 1 1 1, , 0,W t t    2 1 1, , 0,W t t    3 1 1, , 0,W t t             (2.1.30) 

where        1 1 2, , ,A t A t A t H t           4 4 2, , ,A t A t H t A t     

            1 1 2 1, , , ,B t B t N t B t H t B t       

       2 2 1, , .B t B t H t B t     

Equations included in the system (2.1.29) does not depend on each other and 

their solutions are matrix 

         
1

1 1 1 1, , , , , , , , ,

t

t

W t t t s B s B s t s ds        

          ,,,,
~

,
~

,,
1

,,
~

2112

1

dsstsBsBstttW

t

t




    

         
1

3 1 1 2

1
, , , , , , , , ,

t

t

W t t t s B s B s t s ds    


    

at 0   for matrix  1 , , ,W t t    2 , , ,W t t    3 , ,W t t   we have the following 

limit relations:
 

   11 1, , , ,W t t W t      22 1, , , ,W t t W t      33 1, , , ,W t t W t   
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uniformly in  *

0 1 0 1, , .t t t t t     Matrix          
1

1 0 0, ,

t

t

W t t s B s B s t s ds  
 

is the solution of the matrix differential equation 
 

       0 1 1 0 0 0 ,W A t W W A t B t B t     1 1, 0,W t t   

where          1

0 1 2 4 3 ,A t A t A t A t A t            1

0 1 2 4 2 ,B t B t A t A t B t   

       1

2 0 2 4 ,W t B t B t A t   

     4 4( ) ( )

3 2 1 2

0

,
A t A tW t e B t B t e d  


    

is the solution of algebraic equations 

           4 3 4 2 23
.A t W t W t A t B t B t    

2.2  The Criterion Controllability of Movement of 

Singularly Perturbed System 

As shown in the preceding paragraph, after transformation gramiana 

controllability we received matrix (2.1.25). The structure of the matrix is not 

changed and as gramiana controllability can take the matrix (2.1.25). As in the 

previous case, if enter the block matrix 

 
   

   

1 1 2 1

1

2 1 3 1

, , , ,

, , 1
, , , ,

W t t W t t

W t t
W t t W t t

 


 



 
 

   
 

,              (2.2.1) 

then the equation (2.1.26) can be rewritten as a system of singularly perturbed 

three equations with separated variables 



The Optimal Control Algorithms in Systems with Different Rates of Motion 
 

47 

       

       

       

1 1 1 1 1 1 1

2 1 2 2 4 1 2

3 3 3 3 4 2 2

, , , , ,

, , , ,

, , , , ,

W A t W W A t B t B t

W A t W W A t B t B t

W A t W W A t B t B t

   

     

    

   

    

  

          (2.2.2) 

     1 1 1 2 1 1 3 1 1, , 0, , , 0, , , 0,W t t W t t W t t            (2.2.3) 

where  1 1 1 1, , ,W W t t   3 3 1 1, ,W W t t    symmetric matrices sizes  

n n and m m  respectively,  2 2 1 1, ,W W t t    matrix size ,n m
 

               1 1 2 4 4 2, , , , , ,A t A t A t t A t A t t A t           

            

       

1 1 2 1

2 1 1

, , , ,

, , .

B t B t t B t t B t

B t B t t B t

   

  

    

  
 

It should be noted that under the conditions of theorem 2.1.2 the initial system 

(2.1.1) can be replaced by an equivalent system (1.1.25). Such a change is 

possible, since the matrix integral manifolds    , , ,H H t N N t    as the 

solutions of equations (1.1.20), (1.1.21) there are exists and unique (see chap. 1). 

Then we can formulate the following theorem (analogous to theorem 2.1.1). 

Theorem 2.2.1. For the system (1.1.25) at  >0 if and only if there exists a 

control    , ,u t u t   which transfers the system from the initial state  

  0

0,y t y   to the final state   1

1 ,y t y   (see 1.1.24) at 1 0 ,t t t 
 
when the 

vector      1

0 ,M t      belongs in the region of values of the linear 

transformation 

         
1

0

0 1 0 0, , , , , , , , .

t

t

W t t G t s B s B s G t s ds             (2.2.4) 
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At the same time the control 

     0 *, , , ,u t B t G t t y                         (2.2.5) 

is one of the controls providing this transition, where the vector is determined 

from the equation 

   0 1 *, , ,W t t y                         (2.2.6) 

where 

           

     
1

0

1 1 0 1 1

0 0 0 1 1

1

0

, , , , ,

, , , , .

t

t

M t M t y G t t M t y

G t s M s f s ds

       

  

  



  

 
 

As shown by the formula (2.2.6) if the matrix  0 1, ,W t t   has maximal rank, 

then the control system provides translation (1.1.25) from the initial state 

 0

0 ,t y  to the final state  1

1,t y  and system (1.1.25) (and simultaneously the 

system (2.1.1)) is considered quite controllable. Therefore, our the nearest goal 

is to deduce from the system of equations (2.2.2.) the conditions that provide 

full controllability of the system (2.1.1.). 

For sufficiently small values ,  of the equations obtained with respect 
2W  

and 3W  are singularly perturbed. At 0   we have no disturbed (degenerate) 

system 

         

     

       

1 0 1 1 0 0 0 1 1 1

2 4 0 2

4 1 3 3 4 2 2

, , 0,

0 ,

0 ,

W A t W W A t B t B t W t t

W A t B t B t

A t W W A t B t B t

    

  

   

       (2.2.7) 

where                    1 1

0 1 2 4 3 0 1 2 4 2, .A t A t A t A t A t B t B t A t A t B t      
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The solution of the degenerate system approximates the solution of the 

problem (2.2.2), (2.2.3) with precision  ,O   and for 2W  and 3W  this is true 

outside the boundary layer [45], i.e. at away from the point  1,0t . 

Since we are interested in the values of submatrices  2,3iW i   at the 

point 0 ,t t  so the value of  2,3iW i   at the point 0 ,t t  substitute values 

of submatrices  2,3iW i   at indicated the point with an accuracy  O  . 

At 0t t  from (2.2.7) we have a matrix algebraic equations with constant 

coefficients. From the second equation can be determined immediately  

 2 0 1, :W t t  

       1

2 0 1 0 0 2 0 4 0,W t t B t B t A t 
.
                    (2.2.8) 

The equation for  103 ,ttW  is the equation of Lyapunov:  

           4 0 3 0 1 3 0 1 4 0 2 0 2 0, ,A t W t t W t t A t B t B t                  (2.2.9) 

Since the proposal for the real parts of the eigenvalues values of matrix 

 4A t  negative for all  0 1,t t t , then the solution of the Lyapunov equation 

can be represented as a convergent integral [45] 

         4 0 4 0

3 0 1 2 0 2 0

0

,
A t A t

W t t e B t B t e d
 




                (2.2.10) 

solutions (2.2.8) and (2.2.10) may be obtained by other ways. Let’s show it. 

Decision matrix equations (2.2.2.) can be formally represented as [45] 
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          ,,,,
~

,
~

,,,
~

1111

1

dsstsBsBstttW

t

t

              (2.2.11) 

          ,,,,
~

,
~

,,
1

,,
~

2112

1

dsstsBsBstttW

t

t




            (2.2.12) 

          .,,,
~

,
~

,,
1

,,
~

2213

1

dsstsBsBstttW

t

t




           (2.2.13) 

At 0   matrix  1 1 0,W t t   (2.2.11) tends to the solution of the first 

equation of the system (2.2.7), i.e. 

          ,,,, 0011

1

dsstsBsBstttW

t

t

                       (2.2.14) 

where  ,t s   transition matrix for the homogeneous equation  

     0 ,x t A t x t  

                   1 1

0 1 2 4 3 0 1 2 4 2, .A t A t A t A t A t B t B t A t A t B t      

We introduce a new variable 0t t





  to (2.2.12), (2.2.13) we note that at 

sufficiently small   matrices      4 0 0 0 2 0, ,A t B t B t      

are slowly varying functions in the space and they can be replaced by constant 

matrices      4 0 0 0 2 0, ,A t B t B t  [45]. Then at 0  ,    for matrix  

 1, ,iW t t   1,2,3i   at the point 0t t  has the following limit relations: 
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1

0

4 0 4 0

1 0 1 1 0 1 0 0 0 0

1

2 0 1 2 0 1 0 0 2 0 4 0

3 0 1 3 0 1 2 0 2 0

0

, , , , , ,

, , , ,

, , , .

t

t

A t A t

W t t W t t t s B s B s t s ds

W t t W t t B t B t A t

W t t W t t e B t B t e d
 





 




 

    

  

 





    (2.2.15) 

Lemma. Let matrix 1W  and 3W  are nonzero, then at 0   vector 

     will be finite value if and only if the last m  components of vector 

*y  at 0   tends to zero. 

Proof. Let the vector   limited, i.e. exist a number M, that 

Mi ~                                  (2.2.16) 

for all i=1,2…, n m . From (2.2.6) we have the following relation 

  *10

1 ~~,,
~

yttW                         (2.2.17) 

Using the formula the Frobenius [13] ratio (2.2.17) is written in the form 

,~

~

~

~

*

*

2

1

32

21



























 z

x








                   (2.2.18) 

where 
1 1 1 1 1 1

1 2 2 3 3 3 3 2 3, , ,P P W W W W W P W W               

 1 1

1 2 3 2 0 1, , , , 1,2,3;i iP W W W W t t i       1 *, x n    

dimensional, 2 *, z m    dimensional vectors. From (2.2.18) we obtain the 

 
 
























2312

2211

*

*

* ~~'

~~

~

~
~






z

x
y                       (2.2.19) 
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By the condition of the Lemma, the matrices 
1 3,W W   are nonzero and 

reversible. Then for sufficiently small 0   matrix  1,2,3i i   exist at 

0   from (2.2.19) we have 

   
 1 1 *

* *

0
0

0 0

w x
y y




  
     

   
. 

Prove the converse, let the last m  components of the vector  *y   at 0   

tends to zero. It means that m - dimensional vector  
*

z   has an estimate 

   * .z O   

Then the vector  *Z   can be represented as 

   *z     ,   M   , const .                  (2.2.20) 

Considering (2.2.20) from (2.2.17) we get 

  1 * 2

2 * 3

W x W

W x W

 
 



 
  

  
. 

Then for 0  , 

  1 *

2 * 3

,
W x

W x W
 



 
 

  
                                 (2.2.21) 

i.e. vector   
 
at 0   is the ultimate value, where  

*, ,x n m    dimensional vectors, respectively, which do not depend 

on  . The lemma is proved.
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When the condition of the lemma from (2.2.6) we obtain the following 

equation for the submatrices 
1 3W W : 

1 * 1W x                                           (2.2.22) 

*

3 2 ,W                                      (2.2.23) 

Where 

 0 1 *

1 0 1 2 2 2 *, , ,x Ф t t x W x       

   0 1 0

2 4 0 3 0z A t A t x   .. 

These relations can be seen at once that for sufficiently small 0,   

controllability of the two sub-systems of smaller dimension type 

                 0 0 1 4 0 2 0 2 0 ,x t A t x t B t u t f t z A t z B t u f t       (2.2.24) 

where          1

0 1 2 4 2 ,f t f t t t f t    should be controllability the 

complete system (2.1.1). Then from the position of the application of properties 

of linear operators controllability criterion for the system (2.1.1) is formulated 

in the following theorem. 

Theorem 2.2.2. For the system (2.1.1) if and only if there exists a control 

   , ,u t u t   which transfers the system from state  
0

0 ,t y  to state  1

1,t y , 

when vectors  0 1 *

1 0 1 2 2 2 *, ,x t t x W x        belong to the 

region of values of linear transformations 

         
1

0

1 0 1 0 0 0 0, , , ,

t

t

W t t t s s s t s ds                       (2.2.25) 
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         4 0 4 0

3 0 1 2 0 2 0

0

, .
t A t

W t t e B t B t e d
 




             (2.2.26) 

Respectively, in addition, if 
0

* ,x 0 - or a solution of (2.2.22) and 

(2.2.23), it is possible to define control  0 ,u u t  which depending on the time 

of the partial movements mutually independent sub-systems is described by 

different analytic expressions and provides this transition to an accuracy  ,  

i.e. it is written in the form 

 
 

   
















,0,

,

01

0

0

10

0

0




tt
Vtu

ttttu

tu            (2.2.27) 

where            4 00 0 00
0 0 * 2 0, , , .

A tt t
u t B t t t x V B t e


  




         

Note that if the vector 1  belongs to the region of the linear transformation 

(2.2.25), the first subsystem of the system (2.2.24) is completely controllable. 

To prove this part of the theorem is not difficult. 

Proof. The prove of the theorem hold for fast subsystem of the system (2.2.24) 

by means of a change of variable 

 
 

 
0

4 0

, , .

t t
A t

t e z t
  

 
 
                         (2.2.28) 

Then 

 
 

 
0

4 0

, ,

t t
A t

z t e t
  

 
 
                             (2.2.29) 

and  
 

   
 

 
0 0

4 0 4 0

04

1
, , ,

t t t t
A t A t

A tz t e t e t
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Substituting the value of  ,z t   to the fast subsystem (2.2.24) with (2.2.28) 

and (2.2.29) we obtain 

 

       
0

4 0

2 0 2 0,

t t
A t

e t B t u t f t
  

 
 
    , 

from whence 

 
 

      
0

4 0

2 0 2 0,

t t
A t

t e B t u t f t
 

 
 
                       (2.2.30) 

We introduce a new control 

     0 ,u t u t V                                  (2.2.31) 

where 0t t





 . Then 

               4 0 4 0 4 00

2 0 0 2 0 2 0

A t A t A td
e B t u t e B t V e f t

d

  




  
           (2.2.32) 

The solution of the equation can be written as 

              

              

4 0

4 0

1

4 0 0 0 2 0

1

4 0 0 0 2 0 2 0

0

0

.

A t

A t S

e A t B t u t f t

A t B t u t f t e B t V s ds





  
 



  

   
   (2.2.33) 

With the change of variables 

              

            

4 0* 1

4 0 2 0 0 0

* 1

4 0 2 0 0 2 0

,

0 0

A t
e A t B t u t f t

A t B t u t f t


   

 

 



  

  
 

from (2.2.29) we obtain 

                  4 0 4 0 * 1

4 0 2 0 0 2 0

A t A t
z e e A t B t u t f t
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or
 
              4 01 *

4 0 2 0 0 2 0 ,
A t

z A t B t u t f t e      from whence 

              4 0* 1

4 0 2 0 0 2 0

A t
e z A t B t u t f t


  

      .         (2.2.34) 

From the previous lemma is well known that the control  0u t , which 

translates the state of the fast subsystem (2.2.24) of the 
0z  at 0t t  to 

1z at 

1tt   exists if and only if the vector    * *0    belongs to the region of 

values of the matrix  3 0 1,W t t  in (2.2.26). 

To complete the desired transition, require that 

         4 0* *

1 0

0

0 .
t s

e t V s ds  



                     (2.2.35) 

Then one of the controls providing in the unmentioned transition of system 

has the form 

     4 0 *

2 0 ,
A t

V B t e


 
                      (2.2.36) 

where *  is determined from the equation 

     * * *

1 3 0 10 ,W t t     , 1 0
1

t t





 . 

Corollary 1. If the matrices (2.2.25), (2.2.26) have maximal ranks, then the 

system (2.1.1) is completely controllable. 

Corollary 2. In the stationary case: 

a) the operator  1 1 0,W t t (2.2.25) has full rank for any 1t > 0t ; 

b) the operator  3 1 0,W t t  (2.2.26) has full rank if the symmetric matrix 1 2B B  

is positive definite. 
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2.3  Estimation of the Standard Deviation of the Trajectory 

of the System of Movement 

In this section is solved the problem of estimation of the standard deviation of 

motion of a singularly perturbed system. The main requirement for closed-loop 

system is the system to return to the zero from any state, and the value of 

criterion quality along any such motion should be minimized. 

Consider the quadratic functional 

     
1

0

t

t

J y t w t y t dt                                   (2.3.1) 

where   1 2

'

2 3

.
w w

w t
w w

 
  
 

 

In the closed-loop optimal trajectory of system is described by homogeneous 

equations. Therefore avoiding complex analytical expressions and extra 

notation we restrict homogeneous equations, which are obtained from (2.1.1) at 

  ,0, tu  1 , 0,f t    2 , 0.f t    

By virtue of the equations of motion 

           0 0 0 0, , , ,x t t t x t z t t t z t    we have 

               
0

0 0, 0 0 0 0, 1, 0, , ,

t

t

J y t G t t W t G t t y t dt y t V t t y t           (2.3.2) 

where 

 
 

 
0,

0,

0,

, 0
, ,

0 , ,

t t
G t t

t t






 
 
  

        
0

0 0, 0, , , , ,

t

t

V t t G t t W t G t t dt     (2.3.3) 

where , .
n

m

E N
W M WM M

H E HN
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Thus, the target value J  is a quadratic form  0 ,y t and  0,,V t t    its 

matrix. If there are known transition matrices    0 0, , , , , ,t t t t    then 

the matrix  0 1, ,V t t   can be calculated using the formula (2.3.3). One can 

show other methods of calculation. This problem can be reduced to the solution 

of a linear system with singular perturbations, replacing 0t to t  and 

differentiating expression for the  1, ,V t t   by t  we have: 

       

         

1

1

1

, , , , , ,

, , , , .

t

t

d d
V t t G s t W s G s t ds

dt dt

A t V t t V t t A t W t

  

 

 
   

 

   


        (2.3.4) 

From the definition  1, ,V t t   it follows that  1 1, , 0.V t t    

The matrix V  is divided into blocks 

1 2

2 3

V V
V

V V



 

 
  

 
                                     (2.3.5) 

and the equation (2.3.4) in the form of the system three matrices equations: 

     1 1 1 1 1 1 ,V A t V V A t W t      1 1 1, 0,V t t   

     2 1 2 2 4 2 ,V A t V V A t W t        2 1 1, 0,V t t               (2.3.6) 

     3 4 3 3 4 3 ,V A t V V A t W t       3 1 1, 0,V t t   

which can be solved independently. 

Note that the boundary conditions of differential equations are given at the 

not initial time but at the end of the process. 

Thus, the following theorem holds. 
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Theorem 2.3.1. If the blocks of matrix V  are the solutions of differential 

equations in (2.3.6), and    ,x t z t   solutions of the system 

 1 4, ( )x A t x z A t z   
at 

0 1,t t t   then the formula is true 

           
1

0

0 0 1 0, , ,

t

t

y t W t y t dt y t V t t y t                (2.3.7) 

where    
( , )

, .
( , )

x t
y t y t

z t






 
   

 
 

Limit task (at μ→0) for (2.3.6) has the form 

       1 1 1 1 1 1 1 1 1, , 0,V A t V V A t W t V t t                          (2.3.7a) 

   2 4 20 V A t W t                                          (2.3.7b) 

     4 3 3 4 30 ,A t V V A t W t     

where          1

1 1 2 4 3 ,A t A t A t A t A t   

 1 1 0 2 2 0 0 3 0

1

2 2 0 3 3 3 0 4 3

,

, , .

W t W H W W H H W H

W W H W W W H A A

     

    
 

For small  are possible various ways to construct an approximate solution 

of the system (2.3.6). 

At the basic of the approximate solutions lie solutions "systems of fast 

movements." 

 2
1 2 2 4 2 2, 0 0,

dV
AV V A W V

d



                   (2.3.8) 

 3
4 3 3 4 3 3, 0 0,

dV
A V V A W V

d

                       (2.3.9) 
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where    0 0 1 1 1 ,A A t A t        4 1 4 1 4 ,A t A t A    

       1 1 1 2,3 ,i i i iW t W t W t W i        
1 ,

t t





  

1

0 1 2 4 3.A A A A A   

Solutions (2.3.8), (2.3.9) are satisfying the zero initial conditions have the 

form 

 
 1 1

4

0

2 2 ,

A

AV e W e d

  

 



 

 

                          (2.3.10) 

 
 41 1

4

0

3 3 ,

A

AV e W e d

 

 



 

 

                          (2.3.11) 

Consider the equation 

1 2 2 4 2 0,A A W                                   (2.3.12) 

4 3 3 4 3 0,A A W                                  (2.3.13) 

It is easy to show that if the matrix 4A
 
stable, then the matrices 










0

332

0

2
4441 , dseWedseWe
sAsAsAsA  

 

are the unique solutions of the equations (2.3.12) and (2.3.13) respectively. If 

the solution (2.3.10), (2.3.11) at   tend to solutions of the equations 

(2.3.12), (2.3.13), then the well-known theorem Tikhonov, we can say that the 

initial value 32( (0), (0)) (0,0)V V   belongs to the region of influence of the rest 

point ( 2 , 3 ). 
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This raises the question: which kind of conditions the functions 2 3,V V  at 

   tend to solutions of the equations (2.3.12), (2.3.13)? 

On this task a positive response given by the following theorem. 

Theorem is given for (2.3.11) and (2.3.13). 

Theorem 2.3.2. Let 4A  - stable matrix. Then  3 3V  
 
at   , if and 

only if the equality 

4 4 4 4

0

3 3 3 ,
A A A Ae W e d e e   



  
 

                     (2.3.14) 

where 
3  - solution of the equation (2.3.13). 

Proof. Let the equality (2.3.14) function 3V  is written in the form 

  4 4 4 4

0

3 3

A A A AV e e W e d e   



 
   

                      (2.3.15) 

Considering (2.3.14) from (2.3.15) we obtain 

4 4 4 4 4 4

0

3 3 3 .
A A A A A Ae e W e d e e e     



   
     

    .              (2.3.16) 

Since by hypothesis of theorem the matrix 4A
 
is

 
stable and from this follows 

that for     3 3V   . 

Suppose now, on the contrary:  3 3V    at   , where 3   solution 

of equation (2.3.13). If so, then the integral (2.3.14) can be represented in the 

form 
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4 4 4 4 4 4

0

3 3 3 .
A A A A A Ae e W e d e e e     



   
     

          (2.3.16) 

From this follows the equation (2.3.14). Now we show the validity of the 

equality (2.3.14) that  3 - solution of the equation (2.3.13). 

Differentiating both sides of (2.3.14) by   we have: 

4 4 4 4 4 4

3 4 3 3 4.
A A A A A A

e W e A e e e e A
      
     

Multiplying this equality on the left by the matrix 
Ae 

, right to matrix 

4A
e


, obtain the equivalent equation: 

4 4 4 4

3 4 3 3 4 .
A A A A

W e A e e A e
    
  

    

Considering the property of the matrix exponential for constant matrix 4A : 

4 4

4 4

A A
e A A e

 
 , we have from the last 

034334  WAA  . 

By assumption 
3  is a solution of (2.3.13), and therefore is obtained the 

identity. 

The above theorem is valid for (2.3.10) (2.3.12). 

Thus, the estimate of the integral reduces to the solution of algebraic 

equations (2.3.12), (2.3.13) in the semi-infinite interval  0, . Following 

Tikhonov's theorem, we arrive at the following conclusion: 

If a) the matrices    1, 4iA t i   uniformly bounded and uniformly 

continuous together with its derivatives at  10 ,ttt ; 
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b) )(4 tA - stable matrix at  10 ,ttt , then exists a number 
0  

such that 

when 
00     the solution of (2.3.14) exists and is unique in the segment 

10 ttt  . 

The solution of problems (2.3.7a), (2.3.8), (2.3.9) can serve as the asymptotic 

behavior of solutions of (2.3.6) and when assessing the value of the integral 

(2.3.1) provide more accurate results than solutions problems (2.3.7). 
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