Part II

Projective K-theory

Throughout this part we use the following notation: T is a group, 1 is its neutral element, K is the complex Hilbert space $l^{2}(T),\left(T_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of finite subgroups of T the union of which is $T, T_{0}:=\{1\}, E$ is a unital commutative C^{*}-algebra, and f is a Schur E-function for T (Definition 5.0.1).

In the usual K-theory the orthogonal projections (used for K_{0}) and the unitaries (used for K_{1}) are identified with elements of the square matrices, which is not a very elegant procedure from the mathematical point of view, but is justified as a very efficient pragmatic solution. It seems to us that in the present more complicated construction the danger of confusion produced by these identifications is greater and we decided to separate these three domains. Unfortunately this separation complicates the presentation and the notation. Moreover, we also do identifications! In general the stability does not hold. We present in Theorem 6.3.3 (as an example) some strong conditions under which stability holds for K_{0}.

For projective representations of groups we use [2] (but the groups will be finite here) and for the K-theory we use [4], the construction of which we follow step by step. In the sequel we give a list of notation used in this Part.

1) We put for every involutive algebra F,

$$
\operatorname{Pr} F:=\left\{P \in F \mid P=P^{*}=P^{2}\right\}
$$

and for every $A \subset F$,

$$
A^{c}:=\{x \in F \mid y \in A \Longrightarrow x y=y x\} .
$$

2) We denote for every unital involutive algebra F by 1_{F} its unit and set

$$
U n F:=\left\{U \in F \mid U U^{*}=U^{*} U=1_{F}\right\} .
$$

3) If F is a unital C^{*}-algebra and $U, V \in U n F$ then we denote by $U \sim_{h} V$ the assertion U and V are homotopic in $U n F$ and put

$$
U n_{0} F:=\left\{U \in U n F \mid U \sim_{h} 1_{F}\right\} .
$$

Moreover $G L(F)$ denotes the group of invertible elements of F and $G L_{0}(F)$ the elements of $G L(F)$ which are homotopic to 1_{F} in $G L(F)$.
4) If F is a unital C^{*}-algebra and G is a unital C^{*}-subalgebra of F then we denote by $U n_{G} F$ the set of elements of $U n F$ which are homotopic to an element of $U n G$ in $U n F$ and by $G L_{G}(F)$ the set of elements of $G L(F)$ which are homotopic to an element of $G L(G)$ in $G L(F)$.
5) If Ω is a topological space, F a C^{*}-algebra, and $A \subset F$ then we put

$$
\mathscr{C}(\Omega, A):=\{X \in \mathscr{C}(\Omega, F) \mid \omega \in \Omega \Longrightarrow X(\omega) \in A\} .
$$

6) Hilbert E-C*-algebra ([1] Definition 5.6.1.4).
7) $\mathscr{L}_{E}(H)([1]$ Definition 5.6.1.7).

Chapter 5

Some Notation and the Axiom

DEFINITION 5.0.1 Let S be a group and let 1 be its neutral element. A Schur E function for S is a map

$$
f: S \times S \longrightarrow U n E
$$

such that $f(1,1)=1_{E}$ and

$$
f(r, s) f(r s, t)=f(r, s t) f(s, t)
$$

for all $r, s, t \in T$. We denote by $\mathscr{F}(S, E)$ the set of Schur E-functions for S.
Schur functions are also called normalized factor set or multiplier or two-co-cycle (for S with values in $U n E)$ in the literature.

DEFINITION 5.0.2 Let F be an full E-C*-algebra and $n \in \mathbb{N}^{*}$. We put for every $t \in T_{n}$, $\xi \in F^{T_{n}}=F \otimes l^{2}\left(T_{n}\right)$, and $x \in F$,

$$
\begin{gathered}
V_{t} \xi:=V_{t}^{F} \xi: T_{n} \longrightarrow F, \quad s \longmapsto f\left(t, t^{-1} s\right) \xi\left(t^{-1} s\right), \\
x \otimes i d_{K}: F^{T_{n}} \longrightarrow F^{T_{n}}, \quad \xi \longmapsto\left(x \xi_{s}\right)_{s \in T_{n}}
\end{gathered}
$$

so we have

$$
\left(x \otimes i d_{K}\right) V_{t} \xi: T_{n} \longrightarrow F, \quad s \longmapsto f\left(t, t^{-1} s\right) x \xi\left(t^{-1} s\right) .
$$

We define

$$
F_{n}:=\left\{\sum_{t \in T_{n}}\left(X_{t} \otimes i d_{K}\right) V_{t} \mid\left(X_{t}\right)_{t \in T_{n}} \in F^{T_{n}}\right\} .
$$

If $F \xrightarrow{\varphi} G$ is a morphism in \mathfrak{C}_{E} then we put

$$
\varphi_{n}: F_{n} \longrightarrow G_{n}, \quad X \longmapsto \sum_{t \in T_{n}}\left(\left(\varphi X_{t}\right) \otimes i d_{K_{n}}\right) V_{t} .
$$

F_{n} is a full E-C ${ }^{*}$-subalgebra of $\mathscr{L}_{F}\left(F^{T_{n}}\right)$ (Proposition 4.1.7 b), [2] Theorem 2.1.9 h), $\mathrm{k})$), so $1_{F_{n}}=1_{E}$, and φ_{n} is an E-C*-homomorphism, injective or surjective if φ is so ([2] Corollary 2.2.5). Moreover F_{m} is canonically a full E-C*-subalgebra of F_{n} for every $m \in \mathbb{N}^{*}, m<n\left([2]\right.$ Proposition 2.1.2). For every $n \in \mathbb{N}, F_{n} \times G_{n} \approx(F \times G)_{n}$.

DEFINITION 5.0.3 We fix in Part II a sequence $\left(C_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} E_{n}$, put

$$
A_{n}:=C_{n}^{*} C_{n}, \quad B_{n}:=C_{n} C_{n}^{*}
$$

and assume $A_{n}, B_{n} \in \operatorname{Pr} E_{n}, A_{n}+B_{n}=1_{E}=1_{E_{n}}$, and $C_{n} \in\left(E_{n-1}\right)^{c}$ for every $n \in \mathbb{N}$ (where we used the inclusion $E_{n-1} \subset E_{n}$ in the last relation).

From

$$
\begin{gathered}
A_{n}=A_{n}\left(A_{n}+B_{n}\right)=A_{n}^{2}+A_{n} B_{n}=A_{n}+A_{n} B_{n} \\
C_{n}=C_{n}\left(A_{n}+B_{n}\right)=C_{n} A_{n}+C_{n} B_{n}=C_{n}+C_{n}^{2} C_{n}^{*}
\end{gathered}
$$

we get $A_{n} B_{n}=C_{n}^{2}=0$ for every $n \in \mathbb{N}$.
We have $C_{n} \in\left(F_{n-1}\right)^{c}$ for every $n \in \mathbb{N}$ and for every full E-C*-algebra F (where we used the inclusion $F_{n-1} \subset F_{n}$).

DEFINITION 5.0.4 Let $\left(S_{m}\right)_{m \in \mathbb{N}}$ be a sequence of finite groups and $\left(k_{n}\right)_{n \in \mathbb{N}}$ a strictly increasing sequence in \mathbb{N} such that $T_{n}=\prod_{m=1}^{k_{n}} S_{m}$ for all $n \in \mathbb{N}$. We identify S_{m} with a subgroup of T for every $m \in \mathbb{N}$. Assume that for every $m \in \mathbb{N}$ there is a $g_{m} \in \mathscr{F}\left(S_{m}, E\right)$ such that

$$
f(s, t)=\prod_{m \in \mathbb{N}} g_{m}\left(s_{m}, t_{m}\right)
$$

for all $s, t \in T$. For every $n \in \mathbb{N}$ let $m \in \mathbb{N}, k_{n-1}<m \leq k_{n}$, let $\chi: \mathbf{Z}_{2} \times \mathbf{Z}_{2} \longrightarrow S_{m}$ be an injective group homomorphism, and $\beta_{1}, \beta_{2} \in U n E$. We put

$$
\begin{gathered}
a:=\chi(1,0), \quad b:=\chi(0,1), \quad \alpha_{1}:=f(a, a), \quad \alpha_{2}:=f(b, b), \\
C_{n}:=\frac{1}{2}\left(\left(\beta_{1} \otimes i d_{K}\right) V_{a}^{f}+\left(\beta_{2} \otimes i d_{K}\right) V_{b}^{f}\right)
\end{gathered}
$$

If $f(a, b)=-f(b, a)=1_{E}$ and $\alpha_{1} \beta_{1}^{2}+\alpha_{2} \beta_{2}^{2}=0$ then $\left(C_{n}\right)_{n \in \mathbb{N}}$ fulfills the conditions of Axiom 5.0.3.

The assertion follows from [2] Theorem 2.2.18 a), b).
Remark 1. If $E=\mathbf{C}, S_{m}=\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, and $k_{m}=m$ for every $m \in \mathbb{N}$ then (by [2] Proposition 3.2 .1 c) and [2] Corollary 3.2.2 d)) we may choose $\left(C_{n}\right)_{n \in \mathbb{N}}$ in such a way that the corresponding K-theory coincides with the classical one.

Remark 2. Denote by T_{n} the set of permutations p of \mathbb{N} such that $\{j \in \mathbb{N} \mid p(j) \neq j\} \subset \mathbb{N}_{4 \mathrm{n}}$ so T is the set of permutations p of \mathbb{N} such that $\{j \in \mathbb{N} \mid p(j) \neq j\}$ is finite. This example shows that the given conditions for T_{n} in Example 5.0.4 are not automatically fulfilled.

Chapter 6

The Functor K_{0}

$6.1 \quad K_{0}$ for \mathfrak{C}_{E}

Throughout this section F denotes a full $E-\mathrm{C}^{*}$-algebra.

PROPOSITION 6.1.1 Let $n \in \mathbb{N}$.
a) $A_{n}, B_{n} \in\left(F_{n-1}\right)^{c}$ (where we used the inclusion $F_{n-1} \subset F_{n}$).
b) $A_{n} F_{n} A_{n}$ is a unital C^{*}-algebra with A_{n} as unit.
c) The map

$$
\bar{\rho}_{n}^{F}: F_{n-1} \longrightarrow F_{n}, \quad X \longmapsto A_{n} X=X A_{n}=A_{n} X A_{n}=C_{n}^{*} X C_{n}
$$

(where we used the inclusion $F_{n-1} \subset F_{n}$) is an E-linear injective C^{*}-homomorphism.

Only the injectivity of $\bar{\rho}_{n}^{F}$ needs a proof. Let $X \in F_{n-1}$ with $\bar{\rho}_{n}^{F} X=0$. Then

$$
\begin{gathered}
C_{n}^{*} C_{n} X=0, \quad X C_{n}=C_{n} X=0 \\
X B_{n}=X C_{n} C_{n}^{*}=0, \quad X=X\left(A_{n}+B_{n}\right)=0 .
\end{gathered}
$$

Remark. $\bar{\rho}_{n}^{F}$ is not unital since $\bar{\rho}_{n}^{F} 1_{E}=A_{n}$.

DEFINITION 6.1.2 We put for all $m, n \in \mathbb{N}, m<n$,

$$
\rho_{n, m}^{F}:=\bar{\rho}_{n}^{F} \circ \bar{\rho}_{n-1}^{F} \circ \cdots \circ \bar{\rho}_{m+1}^{F}: F_{m} \longrightarrow F_{n} .
$$

Then $\left\{\left(F_{n}\right)_{n \in \mathbb{N}},\left(\rho_{n, m}^{F}\right)_{n, m \in \mathbb{N}}\right\}$ is an inductive system of full E - C^{*}-algebras with injective E-linear (but not unital) maps. We denote by $\left\{F_{\rightarrow},\left(\rho_{n}^{F}\right)_{n \in \mathbb{N}}\right\}$ its algebraic inductive limit. $\quad F_{\rightarrow}$ is an involutive (but not unital) algebra endowed with the structure of an algebraic E - C^{*}-algebra, ρ_{n}^{F} is injective and E-linear for every $n \in \mathbb{N}$, and $\left(\operatorname{Im} \rho_{n}^{F}\right)_{n \in \mathbb{N}}$ is an increasing sequence of involutive subalgebras and algebraic $E-C^{*}$-subalgebras of F_{\rightarrow} the union of which is F_{\rightarrow}. We put for every $X \in F_{n}$,

$$
X_{\rightarrow}:=X_{\rightarrow n}:=X_{\rightarrow n}^{F}:=\rho_{n}^{F} X,
$$

Chapter 6 The Functor K_{0}
and

$$
\begin{gathered}
1_{\rightarrow n}:=1_{\rightarrow n}^{F}:=\rho_{n}^{F} 1_{F_{n}}=\rho_{n}^{F} 1_{E}, \\
F_{\rightarrow n}:=\operatorname{Im} \rho_{n}^{F} .
\end{gathered}
$$

In particular

$$
\left(A_{n}\right)_{\rightarrow}=\rho_{n}^{F} A_{n}=1_{\rightarrow, n-1}, \quad\left(B_{n}\right)_{\rightarrow}=\rho_{n}^{F} B_{n}, \quad\left(C_{n}\right)_{\rightarrow}=\rho_{n}^{F} C_{n}
$$

We put

$$
\operatorname{Pr} F_{\rightarrow}:=\left\{P \in F_{\rightarrow} \mid P=P^{*}=P^{2}\right\}=\bigcup_{n \in \mathbb{N}}\left(\operatorname{Pr} F_{\rightarrow n}\right) .
$$

For $P, Q \in \operatorname{Pr} F_{\rightarrow}$ we put $P \sim_{0} Q$ if there is an $X \in F_{\rightarrow}$ with $X^{*} X=P, X X^{*}=Q$ (in this case there is an $n \in \mathbb{N}$ such that $\left.P, Q, X \in F_{\rightarrow n}\right) ; \sim_{0}$ is the Murray - von Neumann equivalence relation, which we shall use also in the case of C^{*}-algebras. For every $P \in \operatorname{Pr} F_{\rightarrow}$ we denote by \dot{P} its equivalence class in $\operatorname{PrF} / \sim_{0}$.

Often we shall identify F_{n} with $F_{\rightarrow n}$ by using ρ_{n}^{F}. By this identification $F_{\rightarrow n}$ is a full E-C*-algebra with $1_{\rightarrow n}$ as unit.
F_{\rightarrow} is also endowed with a C^{*}-norm and its completion in this norm is the C^{*}-inductive limit of the above inductive system, but we shall not use this supplementary structure in the sequel.

PROPOSITION 6.1.3 If $n \in \mathbb{N}$ and $P \in P r F_{\rightarrow, n-1}$ then

$$
P=\left(A_{n}\right)_{\rightarrow} P \sim_{0}\left(B_{n}\right)_{\rightarrow} P=\left(C_{n}\right)_{\rightarrow} P\left(C_{n}\right)_{\rightarrow}^{*} .
$$

We have

$$
\begin{aligned}
& \left(\left(C_{n}\right)_{\rightarrow} P\right)^{*}\left(\left(C_{n}\right)_{\rightarrow} P\right)=P\left(C_{n}\right)_{\rightarrow}^{*}\left(C_{n}\right)_{\rightarrow \rightarrow} P=\left(A_{n}\right)_{\rightarrow} P, \\
& \left(\left(C_{n}\right)_{\rightarrow \rightarrow} P\right)\left(\left(C_{n}\right)_{\rightarrow \rightarrow} P\right)^{*}=P\left(C_{n}\right)_{\rightarrow}\left(C_{n}\right)_{\rightarrow}^{*} P=\left(B_{n}\right)_{\rightarrow \rightarrow} P,
\end{aligned}
$$

so $\left(A_{n}\right)_{\rightarrow} P \sim_{0}\left(B_{n}\right)_{\rightarrow} P$.

PROPOSITION 6.1.4 For every finite family $\left(P_{i}\right)_{i \in I}$ in $\operatorname{Pr} F_{\rightarrow}$ there is a family $\left(Q_{i}\right)_{i \in I}$ in $\operatorname{Pr} F_{\rightarrow}$ such that $P_{i} \sim_{0} Q_{i}$ for every $i \in I$ and $Q_{i} Q_{j}=0$ for all distinct $i, j \in I$.

We prove the assertion by complete induction with respect to Card I. Let $i_{0} \in I$ and put $J:=I \backslash\left\{i_{0}\right\}$. We may assume, by the induction hypothesis, that there is an $n \in \mathbb{N}$ with $P_{i} \in \operatorname{Pr} F_{\rightarrow, n-1}$ for all $i \in I$ and $P_{i} P_{j}=0$ for all distinct $i, j \in J$. By Proposition 6.1.3,

$$
P_{i_{0}}=\left(A_{n}\right)_{\rightarrow} P_{i_{0}} \sim_{0}\left(C_{n}\right)_{\rightarrow \rightarrow} P_{i_{0}}\left(C_{n}\right)_{\rightarrow}^{*}=: Q_{i_{0}},
$$

and

$$
Q_{i_{0}} P_{j}=\left(C_{n}\right)_{\rightarrow} P_{i_{0}}\left(C_{n}\right)_{\rightarrow}^{*}\left(A_{n}\right)_{\rightarrow \rightarrow} P_{j}=\left(C_{n}\right)_{\rightarrow \rightarrow} P_{i_{0}}\left(C_{n}^{*} A_{n}\right)_{\rightarrow \rightarrow} P_{j}=0
$$

for all $j \in J$.

PROPOSITION 6.1.5 Let $P, Q \in \operatorname{Pr} F_{\rightarrow}$.
a) If $P^{\prime}, P^{\prime \prime}, Q^{\prime}, Q^{\prime \prime} \in P r F_{\rightarrow}$ such that

$$
P \sim_{0} P^{\prime} \sim_{0} P^{\prime \prime}, \quad Q \sim_{0} Q^{\prime} \sim_{0} Q^{\prime \prime}, \quad P^{\prime} Q^{\prime}=P^{\prime \prime} Q^{\prime \prime}=0
$$

then

$$
P^{\prime}+Q^{\prime} \sim_{0} P^{\prime \prime}+Q^{\prime \prime}
$$

We put

$$
\dot{P} \oplus \dot{Q}:=\overbrace{P^{\prime}+Q^{\prime}} .
$$

b) $\operatorname{PrF} F_{\rightarrow} / \sim_{0}$ endowed with the above composition law \oplus is an additive semi-group with $\dot{0}$ as neutral element. We denote by $K_{0}(F)$ its associated Grothendieck group and by

$$
[\cdot]_{0}: \operatorname{Pr} F_{\rightarrow} \longrightarrow K_{0}(F)
$$

the Grothendieck map ([4] 3.1.1).
c) $K_{0}(F)=\left\{[P]_{0}-[Q]_{0} \mid P, Q \in \operatorname{Pr} F_{\rightarrow}\right\}$.
d) For every $a \in K_{0}(F)$ there are $P, Q \in \operatorname{Pr} F_{\rightarrow}$ and $n \in \mathbb{N}$ such that

$$
P=P\left(A_{n}\right)_{\rightarrow}, \quad Q=Q\left(B_{n}\right)_{\rightarrow}, \quad a=[P]_{0}-[Q]_{0} .
$$

a) Let $X, Y \in F_{\rightarrow}$ with

$$
X^{*} X=P^{\prime}, \quad X X^{*}=P^{\prime \prime}, \quad Y^{*} Y=Q^{\prime}, \quad Y Y^{*}=Q^{\prime \prime}
$$

Chapter 6 The Functor K_{0}

Then

$$
0=P^{\prime} Q^{\prime}=X^{*} X Y^{*} Y, \quad 0=P^{\prime \prime} Q^{\prime \prime}=X X^{*} Y Y^{*}
$$

so

$$
\begin{gathered}
X Y^{*}=X^{*} Y=0, \quad(X+Y)^{*}(X+Y)=X^{*} X+Y^{*} Y=P^{\prime}+Q^{\prime} \\
(X+Y)(X+Y)^{*}=X X^{*}+Y Y^{*}=P^{\prime \prime}+Q^{\prime \prime}, \quad P^{\prime}+Q^{\prime} \sim_{0} P^{\prime \prime}+Q^{\prime \prime} .
\end{gathered}
$$

b) and c) follow from a) and Proposition 6.1.4.
d) follows from c) and Proposition 6.1.3.

COROLLARY 6.1.6 The following are equivalent for all $n \in \mathbb{N}$ and $P, Q \in \operatorname{Pr} F_{\rightarrow n}$.
a) $[P]_{0}=[Q]_{0}$.
b) There is an $R \in \operatorname{Pr} F_{\rightarrow}$ such that

$$
P R=Q R=0, \quad P+R \sim_{0} Q+R .
$$

c) There is an $m \in \mathbb{N}, m>n+1$, such that

$$
P+\left(B_{m}\right)_{\rightarrow} \sim_{0} Q+\left(B_{m}\right)_{\rightarrow}
$$

or (by identifying F_{m} with $F_{\rightarrow m}$)

$$
\left(\prod_{i=n+1}^{m} A_{i}\right) P+\left(1_{E}-\prod_{i=n+1}^{m} A_{i}\right) \sim_{0}\left(\prod_{i=n+1}^{m} A_{i}\right) Q+\left(1_{E}-\prod_{i=n+1}^{m} A_{i}\right) .
$$

$a \Rightarrow b$ follows from Proposition 6.1.4 (and from the definition of the Grothendieck group).
$b \Rightarrow c$. We may assume $R \in F_{\rightarrow, m-1}$ for some $m>n+1$. By Proposition 6.1.3,

$$
P+\left(B_{m}\right)_{\rightarrow} R \sim_{0} P+R \sim_{0} Q+R \sim_{0} Q+\left(B_{m}\right)_{\rightarrow} R,
$$

so

$$
\begin{gathered}
P+\left(B_{m}\right)_{\rightarrow}=P+\left(B_{m}\right)_{\rightarrow} R+\left(\left(B_{m}\right)_{\rightarrow}-\left(B_{m}\right)_{\rightarrow} R\right) \sim_{0} \\
\sim_{0} Q+\left(B_{m}\right)_{\rightarrow} R+\left(\left(B_{m}\right)_{\rightarrow}-\left(B_{m}\right)_{\rightarrow} R\right)=Q+\left(B_{m}\right)_{\rightarrow} .
\end{gathered}
$$

It follows

$$
\begin{aligned}
& \left(\prod_{i=n+1}^{m} A_{i}\right) P+\left(1_{E}-\prod_{i=n+1}^{m} A_{i}\right)=\rho_{m, n}^{F} P+B_{m}+\left(A_{m}-\prod_{i=n+1}^{m} A_{i}\right) \sim_{0} \\
& \sim_{0} \rho_{m, n}^{F} Q+B_{m}+\left(A_{m}-\prod_{i=n+1}^{m} A_{i}\right)=\left(\prod_{i=n+1}^{m} A_{i}\right) Q+\left(1_{E}-\prod_{i=n+1}^{m} A_{i}\right) .
\end{aligned}
$$

$\mathrm{c} \Rightarrow \mathrm{a}$ is trivial.

COROLLARY 6.1.7 If for every $n \in \mathbb{N}$ and $P \in \operatorname{Pr} F_{\rightarrow n}$ there is an $m \in \mathbb{N}, m>n+1$, such that $P+\left(B_{m}\right)_{\rightarrow} \sim_{0} 1_{E}$ then $K_{0}(F)=\{0\}$.

Let $P, Q \in \operatorname{Pr} F_{\rightarrow}$. By our hypothesis there is an $m \in \mathbb{N}$ such that $P+\left(B_{m}\right) \rightarrow_{0} Q+$ $\left(B_{m}\right)_{\rightarrow}$. By Corollary 6.1.6 $c \Rightarrow a,[P]_{0}=[Q]_{0}$. Thus by Proposition 6.1.5 c), $K_{0}(F)=\{0\}$.

COROLLARY 6.1.8 $K_{0}(E) \neq\{0\}$.

Assume $K_{0}(E)=\{0\}$. Then $\left[1_{E}\right]_{0}=[0]_{0}$, so by Corollary 6.1.6 $a \Rightarrow c$, there is an $n \in \mathbb{N}$ such that

$$
1_{E} \sim_{0} 1_{E}-\prod_{i=1}^{n} A_{i}
$$

Let ω be a point of the spectrum of E. Since $E_{n}(\omega)$ is a product of square matrices the above relation leads to a contradiction by using the trace function.

PROPOSITION 6.1.9 Let \mathscr{G} be an additive group and $v: \operatorname{Pr} F_{\rightarrow} \rightarrow \mathscr{G}$ a map such that

1) $P, Q \in P r F_{\rightarrow}, P Q=0 \Longrightarrow v(P+Q)=v(P)+v(Q)$.
2) $P, Q \in P r F_{\rightarrow}, P \sim_{0} Q \Longrightarrow v(P)=v(Q)$.

Then there is a unique group homomorphism $\mu: K_{0}(F) \rightarrow \mathscr{G}$ such that $\mu[P]_{0}=v(P)$ for every $P \in \operatorname{Pr} F_{\rightarrow}$.

Chapter 6 The Functor K_{0}

By 2), v is well-defined on $\operatorname{Pr} F_{\rightarrow} / \sim_{0}$ and by 1) and Proposition 6.1.5 a),b), v is an additive map on $\operatorname{Pr} F_{\rightarrow} / \sim_{0}$. By 2) and Corollary $6.1 .6 \mathrm{a} \Rightarrow \mathrm{b}, v$ is well-defined on $K_{0}(F)$. The existence and uniqueness of μ with the given properties follows now from Proposition 6.1.5 c).

PROPOSITION 6.1.10 Let $F \xrightarrow{\varphi} G$ be a morphism in \mathfrak{C}_{E}.
a) For $m, n \in \mathbb{N}, m<n$, the diagram

is commutative. Thus there is a unique E-linear involutive algebra homomorphism $\varphi_{\rightarrow}: F_{\rightarrow} \longrightarrow G_{\rightarrow}$ with

$$
\varphi_{\rightarrow} \circ \rho_{n}^{F}=\rho_{n}^{G} \circ \varphi_{n}
$$

for every $n \in \mathbb{N}$.
b) φ_{\rightarrow} is injective or surjective if φ is so.
c) There is a unique group homomorphism $K_{0}(\varphi): K_{0}(F) \longrightarrow K_{0}(G)$ such that

$$
K_{0}(\varphi)[P]_{0}=\left[\varphi_{\rightarrow} P\right]_{0}
$$

for every $P \in \operatorname{Pr} F_{\rightarrow}$.
d) If φ is the identity map then $K_{0}(\varphi)$ is also the identity map.
e) If $\varphi=0$ then $K_{0}(\varphi)=0$.
a) It is sufficient to prove the assertion for $n=m+1$. For $X \in F_{m}$,

$$
\varphi_{n} \bar{\rho}_{n}^{F} X=\varphi_{n}\left(A_{n} X\right)=A_{n} \varphi_{n} X=\bar{\rho}_{n}^{G} \varphi_{n} X
$$

(where we used the inclusion $F_{m} \subset F_{n}$).
b) follows from the fact that for every $n \in \mathbb{N}, \varphi_{n}$ is injective or surjective if φ is so ([2] Theorem 2.1.9 a))).
c) By a) and Proposition 6.1.3, the map

$$
\operatorname{Pr} F_{\rightarrow} \longrightarrow K_{0}(G), \quad P \longmapsto\left[\varphi_{\rightarrow} P\right]_{0}
$$

possesses the properties from Proposition 6.1.9.
d) and e) are obvious.

COROLLARY 6.1.11 If $F \xrightarrow{\varphi} G \xrightarrow{\psi} H$ are morphisms in \mathfrak{C}_{E} then

$$
(\psi \circ \varphi)_{\rightarrow}=\psi_{\rightarrow} \circ \varphi_{\rightarrow}, \quad K_{0}(\psi \circ \varphi)=K_{0}(\psi) \circ K_{0}(\varphi) .
$$

PROPOSITION 6.1.12

a) The maps

$$
\begin{gathered}
\mu: \check{F} \longrightarrow F, \quad(\alpha, x) \longmapsto \alpha+x \\
\lambda^{\prime}: E \longrightarrow \check{F}, \quad \alpha \longmapsto(\alpha,-\alpha)
\end{gathered}
$$

are $E-C^{*}$-homomorphisms.
b)

$$
\begin{aligned}
& \mu \circ \imath^{F}=i d_{F}, \quad \imath^{F} \circ \mu+\lambda^{\prime} \circ \pi^{F}=i d_{\check{F}}, \\
& K_{0}\left(\imath^{F}\right) \circ K_{0}(\mu)+K_{0}\left(\lambda^{\prime}\right) \circ K_{0}\left(\pi^{F}\right)=i d_{K_{0}(\check{F})} .
\end{aligned}
$$

c)

$$
0 \longrightarrow K_{0}(F) \xrightarrow{K_{0}\left(\imath^{F}\right)} K_{0}(\check{F}) \stackrel{K_{0}\left(\pi^{F}\right)}{\stackrel{K_{0}\left(\lambda^{F}\right)}{\leftrightarrows}} K_{0}(E) \longrightarrow 0
$$

is a split exact sequence.
a) is easy to see.
b) $\operatorname{For}(\alpha, x),(\beta, y) \in \check{F}$,

$$
\begin{gathered}
\imath^{F} \mu(\alpha, x)=(0, \alpha+x), \quad \lambda^{\prime} \pi^{F}(\alpha, x)=(\alpha,-\alpha), \\
\left(\imath^{F} \mu(\alpha, x)\right)\left(\lambda^{\prime} \pi^{F}(\beta, y)\right)=(0, \alpha+x)(\beta,-\beta)=(0,0), \\
\left(\imath^{F} \mu+\lambda^{\prime} \pi^{F}\right)(\alpha, x)=(\alpha, x)
\end{gathered}
$$

Chapter 6 The Functor K_{0}
so $\imath^{F} \circ \mu+\lambda^{\prime} \circ \pi^{F}$ is a full $E-\mathrm{C}^{*}$-homomorphism and

$$
\imath^{F} \circ \mu+\lambda^{\prime} \circ \pi^{F}=i d_{\check{F}}
$$

By a) and Corollary 6.1.11,

$$
\imath_{\rightarrow}^{F} \circ \mu_{\rightarrow}+\lambda_{\rightarrow}^{\prime} \circ \pi_{\rightarrow}^{F}=i d_{\check{F}_{\rightarrow}} .
$$

By Proposition 6.1.10 c),d) and Corollary 6.1.11, for $P \in \operatorname{Pr} \check{F}_{\rightarrow}$,

$$
\begin{gathered}
\left(K_{0}\left(\imath^{F}\right) \circ K_{0}(\mu)+K_{0}\left(\lambda^{\prime}\right) \circ K_{0}\left(\pi^{F}\right)\right)[P]_{0}=K_{0}\left(\imath^{F} \circ \mu\right)[P]_{0}+K_{0}\left(\lambda^{\prime} \circ \pi^{F}\right)[P]_{0}= \\
=\left[\imath_{\rightarrow}^{F} \mu_{\rightarrow} P\right]_{0}+\left[\lambda_{\rightarrow}^{\prime} \pi_{\rightarrow}^{F} P\right]_{0}=\left[\left(\imath^{F} \circ \mu+\lambda^{\prime} \circ \pi^{F}\right)_{\rightarrow} P\right]_{0}=[P]_{0}
\end{gathered}
$$

so by Proposition 6.1.5 c),

$$
K_{0}\left(\imath^{F}\right) \circ K_{0}(\mu)+K_{0}\left(\lambda^{\prime}\right) \circ K_{0}\left(\pi^{F}\right)=i d_{K_{0}(\check{F})} .
$$

c) By b), Proposition 6.1.10 d),e), and Corollary 6.1.11,

$$
\begin{gathered}
K_{0}\left(\pi^{F}\right) \circ K_{0}\left(\imath^{F}\right)=K_{0}\left(\pi^{F} \circ \imath^{F}\right)=0, \\
K_{0}\left(\pi^{F}\right) \circ K_{0}\left(\lambda^{F}\right)=K_{0}\left(\pi^{F} \circ \lambda^{F}\right)=i d_{K_{0}(E)}, \\
K_{0}(\mu) \circ K_{0}\left(\imath^{F}\right)=K_{0}\left(\mu \circ \imath^{F}\right)=i d_{K_{0}(F)}
\end{gathered}
$$

and so $K_{0}\left(\imath^{F}\right)$ is injective. By b), for $a \in K_{0}(\check{F})$,

$$
a=K_{0}\left(\imath^{F}\right) K_{0}(\mu) a+K_{0}\left(\lambda^{\prime}\right) K_{0}\left(\pi^{F}\right) a .
$$

Thus if $a \in \operatorname{Ker} K_{0}\left(\pi^{F}\right)$ then $a=K_{0}\left(\imath^{F}\right) K_{0}(\mu) a \in \operatorname{Im} K_{0}\left(\imath^{F}\right)$, and so $\operatorname{Ker} K_{0}\left(\pi^{F}\right)=\operatorname{Im} K_{0}\left(l^{F}\right)$.

$6.2 K_{0}$ for \mathfrak{M}_{E}

DEFINITION 6.2.1 Let F be an $E-C^{*}$-algebra and consider the split exact sequence

$$
0 \longrightarrow F \xrightarrow{\mathbf{l}^{F}} \check{F} \stackrel{\pi^{F}}{\stackrel{\lambda^{F}}{\gtrless}} E \longrightarrow 0
$$

introduced in Definition 4.1.4. We put

$$
K_{0}(F):=\operatorname{Ker} K_{0}\left(\pi^{F}\right)
$$

By Proposition 6.1.12 c), this definition does not contradict the definition given in Proposition 6.1 .5 b) for the case that F is an full $E-\mathrm{C}^{*}$-algebra.
$K_{0}(\{0\})=\{0\}$ since $\pi^{\{0\}}$ is bijective.

PROPOSITION 6.2.2 Let $F \stackrel{\varphi}{\longrightarrow} G$ be a morphism in \mathfrak{M}_{E}.
a) The diagram

is commutative.
b) The diagram

$$
\begin{array}{ccc}
K_{0}(F) & \frown & K_{0}(\check{F}) \xrightarrow{K_{0}\left(\pi^{F}\right)} K_{0}(E) \\
K_{0}(\varphi) \downarrow & & \\
& & K_{0}(\check{\varphi}) \\
K_{0}(G) & & \\
\subset & K_{0}(\check{G}) \xrightarrow[K_{0}\left(\pi^{G}\right)]{ } & K_{0}(E)
\end{array}
$$

is commutative, where $K_{0}(\varphi)$ is defined by $K_{0}(\check{\varphi})$.
c) If $P \in \operatorname{Pr} F_{\rightarrow}$ then

$$
K_{0}(\varphi)[P]_{0}=\left[\varphi_{\rightarrow} P\right]_{0} .
$$

d) $K_{0}\left(i d_{F}\right)=i d_{K_{0}(F)}$.
e) If $\varphi=0$ then $K_{0}(\varphi)=0$.
a) is obvious.
b) By a) and Corollary 6.1.11, the right part of the diagram is commutative. This implies the existence (and uniqueness) of $K_{0}(\varphi)$.
c) By a), b), Proposition 6.1.10 a), c), and Corollary 6.1.11,

$$
K_{0}(\varphi)[P]_{0}=K_{0}(\check{\varphi})\left[\imath_{\rightarrow}^{F} P\right]_{0}=\left[\check{\varphi}_{\rightarrow} \imath_{\rightarrow}^{F} P\right]_{0}=\left[\imath_{\rightarrow}^{G} \varphi_{\rightarrow} P\right]_{0}=\left[\varphi_{\rightarrow} P\right]_{0} .
$$

d) and e) follow from c) and Proposition 6.1.5 c).

Chapter 6 The Functor K_{0}

COROLLARY 6.2.3 Let $F \xrightarrow{\varphi} G \xrightarrow{\psi} H$ be morphisms in \mathfrak{M}_{E}.
a) $K_{0}(\psi) \circ K_{0}(\varphi)=K_{0}(\psi \circ \varphi)$.
b) If φ is an isomorphism then $K_{0}(\varphi)$ is also an isomorphism and

$$
K_{0}(\varphi)^{-1}=K_{0}\left(\varphi^{-1}\right) .
$$

a) follows from Proposition 4.1.5 b), Corollary 6.1.11, and Proposition 6.2.2 b).
b) follows from a) and Proposition 6.2.2 d).

PROPOSITION 6.2.4 For every $E-C^{*}$-algebra F,

$$
K_{0}(F)=\left\{[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0} \mid P \in \operatorname{Pr} \check{F}_{\rightarrow}\right\} .
$$

For $P \in \operatorname{Pr} \check{F}_{\rightarrow}$, by Proposition 6.2.2 c) and Corollary 6.1.11 (since $\pi^{F}=\pi^{F} \circ \sigma^{F}$),

$$
K_{0}\left(\pi^{F}\right)\left[\sigma_{\rightarrow}^{F} P\right]_{0}=\left[\pi_{\rightarrow}^{F} \sigma_{\rightarrow}^{F} P\right]_{0}=\left[\pi_{\rightarrow}^{F} P\right]_{0}=K_{0}\left(\pi^{F}\right)[P]_{0}
$$

so

$$
[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0} \in \operatorname{Ker} K_{0}\left(\pi^{F}\right)=K_{0}(F)
$$

Let $a \in K_{0}(F)$. By Proposition 6.1.5 d), there are $Q, R \in \operatorname{Pr} \check{F}_{\rightarrow}$ and $n \in \mathbb{N}$ such that

$$
Q=Q\left(A_{n}\right)_{\rightarrow}, \quad R=R\left(B_{n}\right)_{\rightarrow}, \quad a=[Q]_{0}-[R]_{0} .
$$

Then

$$
\begin{gathered}
a=\left[Q\left(A_{n}\right)_{\rightarrow}\right]_{0}+\left[\left(B_{n}\right)_{\rightarrow}-R\left(B_{n}\right)_{\rightarrow}\right]_{0}-\left(\left[R\left(B_{n}\right)_{\rightarrow}\right]_{0}-\left[\left(B_{n}\right)_{\rightarrow}-R\left(B_{n}\right)_{\rightarrow}\right]_{0}\right)= \\
=\left[Q\left(A_{n}\right)_{\rightarrow}+\left(\left(B_{n}\right)_{\rightarrow}-R\left(B_{n}\right)_{\rightarrow}\right)\right]_{0}-\left[\left(B_{n}\right)_{\rightarrow}\right]_{0} .
\end{gathered}
$$

If we put

$$
P:=Q\left(A_{n}\right)_{\rightarrow}+\left(\left(B_{n}\right)_{\rightarrow}-R\left(B_{n}\right)_{\rightarrow}\right)
$$

then

$$
a=[P]_{0}-\left[\left(B_{n}\right)_{\rightarrow}\right]_{0} .
$$

By Proposition 6.2.2 c) and Corollary 6.1.11 (and Definition 4.1.4)

$$
\begin{gathered}
0=K_{0}\left(\pi^{F}\right) a=K_{0}\left(\pi^{F}\right)[P]_{0}-K_{0}\left(\pi^{F}\right)\left[\left(B_{n}\right)_{\rightarrow}\right]_{0}=\left[\pi_{\rightarrow}^{F} P\right]_{0}-\left[\pi_{\rightarrow}^{F}\left(B_{n}\right)_{\rightarrow}\right]_{0} \\
{\left[\sigma_{\rightarrow}^{F} P\right]_{0}=\left[\lambda_{\rightarrow}^{F} \pi_{\rightarrow}^{F} P\right]_{0}=K_{0}\left(\lambda^{F}\right)\left[\pi_{\rightarrow}^{F} P\right]_{0}=K_{0}\left(\lambda^{F}\right)\left[\pi_{\rightarrow}^{F}\left(B_{n}\right)_{\rightarrow}\right]_{0}=} \\
=\left[\lambda_{\rightarrow}^{F} \pi_{\rightarrow}^{F}\left(B_{n}\right)_{\rightarrow}\right]_{0}=\left[\sigma_{\rightarrow}^{F}\left(B_{n}\right)_{\rightarrow}\right]_{0}=\left[\left(B_{n}\right)_{\rightarrow}\right]_{0}, \\
a=[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0} .
\end{gathered}
$$

PROPOSITION 6.2.5 Let F be an full $E-C^{*}$-algebra and $n \in \mathbb{N}$.
a) $C_{n}+C_{n}^{*} \in U n_{0} E_{n}$.
b) For $X, Y \in F_{n-1}$,

$$
\left(C_{n}+C_{n}^{*}\right)\left(A_{n} X+B_{n} Y\right)\left(C_{n}+C_{n}^{*}\right)=B_{n} X+A_{n} Y .
$$

c) If $U, V \in U n F_{n-1}$ then $A_{n} U+B_{n} V \in U n F_{n}$.
d) If $U \in U n F_{n-1}$ then $A_{n} U+B_{n} \in U n F_{n}$ and $A_{n} U+B_{n} U^{*} \in U n_{0} F_{n}$.
a) From

$$
\left(C_{n}+C_{n}^{*}\right)\left(C_{n}+C_{n}^{*}\right)=B_{n}+A_{n}=1_{E}
$$

it follows that $C_{n}+C_{n}^{*}$ is unitary. Being selfadjoint, its spectrum is contained in $\{-1,+1\}$ and so it belongs to $U n_{0} E_{n}$ ([4] Lemma 2.1.3 (ii)).
b) We have

$$
\left(C_{n}+C_{n}^{*}\right)\left(A_{n} X+B_{n} Y\right)\left(C_{n}+C_{n}^{*}\right)=\left(C_{n} X+C_{n}^{*} Y\right)\left(C_{n}+C_{n}^{*}\right)=B_{n} X+A_{n} Y .
$$

c) We have

$$
\begin{aligned}
& \left(A_{n} U+B_{n} V\right)\left(A_{n} U+B_{n} V\right)^{*}=A_{n}+B_{n}=1_{E}, \\
& \left(A_{n} U+B_{n} V\right)^{*}\left(A_{n} U+B_{n} V\right)=A_{n}+B_{n}=1_{E} .
\end{aligned}
$$

d) By c), $A_{n} U+B_{n} \in U n F_{n}$. By b),

$$
\left(C_{n}+C_{n}^{*}\right)\left(A_{n} U^{*}+B_{n}\right)\left(C_{n}+C_{n}^{*}\right)=B_{n} U^{*}+A_{n},
$$

Chapter 6 The Functor K_{0}
so it follows from a), that $A_{n} U^{*}+B_{n}$ is homotopic to $B_{n} U^{*}+A_{n}$ in $U n F_{n}$ and so

$$
A_{n} U+B_{n} U^{*}=\left(A_{n} U+B_{n}\right)\left(A_{n}+B_{n} U^{*}\right)
$$

is homotopic in $U n F_{n}$ to

$$
\left(A_{n} U+B_{n}\right)\left(A_{n} U^{*}+B_{n}\right)=A_{n}+B_{n}=1_{E},
$$

i.e. $A_{n} U+B_{n} U^{*} \in U n_{0} F_{n}$.

PROPOSITION 6.2.6 Let F be a full $E-C^{*}$-algebra, $n \in \mathbb{N}, P, Q \in \operatorname{Pr} F_{n}$, and $X \in F_{n}$ with $X^{*} X=P, X X^{*}=Q$. Then there is a $U \in U n_{0} F_{n+2}$ with

$$
U\left(A_{n+2} A_{n+1} P\right) U^{*}=A_{n+2} A_{n+1} Q, \quad \text { i.e. } \quad U_{\rightarrow} P_{\rightarrow} U_{\rightarrow}^{*}=Q_{\rightarrow} .
$$

We have $X\left(1_{E}-P\right)=\left(1_{E}-Q\right) X=0$. Put

$$
V:=A_{n+1} X+C_{n+1}\left(1_{E}-P\right)+C_{n+1}^{*}\left(1_{E}-Q\right)+B_{n+1} X^{*} \quad\left(\in F_{n+1}\right)
$$

Then

$$
\begin{gathered}
V^{*}=A_{n+1} X^{*}+C_{n+1}^{*}\left(1_{E}-P\right)+C_{n+1}\left(1_{E}-Q\right)+B_{n+1} X \\
V V^{*}=A_{n+1} Q+B_{n+1}\left(1_{E}-P\right)+A_{n+1}\left(1_{E}-Q\right)+B_{n+1} P=A_{n+1}+B_{n+1}=1_{E}, \\
V^{*} V=A_{n+1} P+A_{n+1}\left(1_{E}-P\right)+B_{n+1}\left(1_{E}-Q\right)+B_{n+1} Q=A_{n+1}+B_{n+1}=1_{E}
\end{gathered}
$$

so $V \in U n F_{n+1}$. Moreover

$$
V A_{n+1} P=A_{n+1} X, \quad A_{n+1} X V^{*}=A_{n+1} Q
$$

Put

$$
U:=A_{n+2} V+B_{n+2} V^{*} .
$$

By Proposition 6.2.5 d), $U \in U n_{0} F_{n+2}$. We have

$$
\begin{gathered}
U\left(A_{n+2} A_{n+1} P\right) U^{*}=\left(A_{n+2} V+B_{n+2} V^{*}\right) A_{n+2} A_{n+1} P\left(A_{n+2} V^{*}+B_{n+2} V\right)= \\
=A_{n+2} A_{n+1} X\left(A_{n+2} V^{*}+B_{n+2} V\right)=A_{n+2} A_{n+1} Q
\end{gathered}
$$

PROPOSITION 6.2.7 Let $F \xrightarrow{\varphi} G$ be a morphism in \mathfrak{M}_{E} and $a \in \operatorname{Ker} K_{0}(\varphi)$.
a) There are $n \in \mathbb{N}, P \in \operatorname{Pr} \check{F}_{\rightarrow n}$, and $U \in U n_{0} \check{G}_{\rightarrow, n+2}$ such that

$$
a=[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0} \quad U\left(\check{\varphi}_{\rightarrow} P\right) U^{*}=\sigma_{\rightarrow}^{G} \breve{\varphi}_{\rightarrow} P .
$$

b) If φ is surjective then there is a $P \in \operatorname{Pr} \check{F}_{\rightarrow}$ such that

$$
a=[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0}, \quad \check{\varphi} \rightarrow P=\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} P .
$$

a) By Proposition 6.2.4, there are $m \in \mathbb{N}$ and $Q \in \operatorname{Pr} \check{F}_{\rightarrow, m-1}$ such that

$$
a=[Q]_{0}-\left[\sigma_{\rightarrow}^{F} Q\right]_{0}
$$

Since $\check{\varphi} \circ \sigma^{F}=\sigma^{G} \circ \check{\varphi}$, by Proposition 6.1.10 c) and Corollary 6.1.11,

$$
0=K_{0}(\varphi) a=\left[\check{\varphi}_{\rightarrow} Q\right]_{0}-\left[\check{\varphi}_{\rightarrow} \sigma_{\rightarrow}^{F} Q\right]_{0}=\left[\check{\varphi}_{\rightarrow} Q\right]_{0}-\left[\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} Q\right]_{0} .
$$

By Corollary 6.1.6 $\mathrm{a} \Rightarrow \mathrm{c}$, there is an $n \in \mathbb{N}, n>m$, such that

$$
\check{\varphi}_{\rightarrow} Q+\left(B_{n}\right)_{\rightarrow} \sim_{0} \sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} Q+\left(B_{n}\right)_{\rightarrow}=\sigma_{\rightarrow}^{G}\left(\check{\varphi}_{\rightarrow} Q+\left(B_{n}\right)_{\rightarrow}\right) .
$$

Put

$$
P:=Q+\left(B_{n}\right)_{\rightarrow} \in \operatorname{Pr} \check{F}_{\rightarrow n} .
$$

Then

$$
\begin{aligned}
{[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0} } & =[Q]_{0}+\left[\left(B_{n}\right)_{\rightarrow}\right]_{0}-\left[\sigma_{\rightarrow}^{F} Q\right]_{0}-\left[\left(B_{n}\right)_{\rightarrow}\right]_{0}=a, \\
{\left[\check{\varphi}_{\rightarrow} P\right]_{0}-\left[\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} P\right]_{0} } & =\left[\check{\varphi}_{\rightarrow} Q\right]_{0}+\left[\left(B_{n}\right)_{\rightarrow}\right]_{0}-\left[\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} Q\right]_{0}-\left[\left(B_{n}\right)_{\rightarrow}\right]_{0}=0 .
\end{aligned}
$$

By Corollary 6.1.6 $\mathrm{a} \Rightarrow \mathrm{b}$ and Proposition 6.2 .6 , there is a $U \in U n_{0} \breve{G}_{\rightarrow, n+2}$ with

$$
U\left(\check{\varphi}_{\rightarrow} P\right) U^{*}=\sigma_{\rightarrow}^{G} \breve{\varphi} P
$$

b) By a), there are $n \in \mathbb{N}, n>2, Q \in \operatorname{Pr} \check{F}_{\rightarrow, n-2}$, and $U \in U n_{0} \check{G}_{\rightarrow n}$ such that

$$
a=[Q]_{0}-\left[\sigma_{\rightarrow}^{F} Q\right]_{0}, \quad U\left(\check{\varphi}_{\rightarrow} Q\right) U^{*}=\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} Q .
$$

Since $\varphi_{n}: \check{F}_{n} \longrightarrow \check{G}_{n}$ is surjective, by [4] Lemma 2.1 .7 (i), there is a $V \in U n \check{F}_{\rightarrow n}$ with $\breve{\varphi}_{n} V=U$. We put

$$
P:=V Q V^{*} \sim_{0} Q
$$

so

$$
a=[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0}
$$

Chapter 6 The Functor K_{0}
and

$$
\begin{gathered}
\check{\varphi}_{\rightarrow} P=\left(\check{\varphi}_{\rightarrow} V\right)\left(\check{\varphi}_{\rightarrow} Q\right)\left(\check{\varphi}_{\rightarrow} V^{*}\right)=U\left(\check{\varphi}_{\rightarrow} Q\right) U^{*}=\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} Q, \\
\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} P=\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} Q=\check{\varphi}_{\rightarrow} P .
\end{gathered}
$$

PROPOSITION 6.2.8 Let

$$
0 \longrightarrow F \stackrel{\varphi}{\longrightarrow} G \xrightarrow{\psi} H \longrightarrow 0
$$

be an exact sequence in \mathfrak{M}_{E}.
a) $\breve{\varphi}_{\rightarrow}$ is injective.
b) The following are equivalent for all $X \in \check{G}_{\rightarrow}$:
b1) $X \in \operatorname{Im} \check{\varphi}_{\rightarrow}$.
$\left.b_{2}\right) \check{\psi}_{\rightarrow X} X=\sigma_{\rightarrow}^{H} \check{\psi}_{\rightarrow} X$.
c) $K_{0}(F) \xrightarrow{K_{0}(\varphi)} K_{0}(G) \xrightarrow{K_{0}(\Psi)} K_{0}(H)$ is exact.
a) $\check{\varphi}$ is injective (Proposition 4.1.5 a)) and the assertion follows from Proposition 6.1.10 b).
$b_{1} \Rightarrow b_{2}$ follows from $\psi \circ \varphi=0$.
$b_{2} \Rightarrow b_{1}$. Let $n \in \mathbb{N}$ such that $X \in \check{G}_{\rightarrow n}$, which we identify with \check{G}_{n}. Then X has the form

$$
X=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, Y_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{G}},
$$

where $\left(\alpha_{t}, Y_{t}\right) \in \check{G}$ for every $t \in T_{n}$, and so by b_{2}),

$$
\sum_{t \in T_{n}}\left(\left(\alpha_{t}, \psi Y_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{H}}=\check{\psi}_{n} X=\sigma_{n}^{H} \check{\psi}_{n} X=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, 0\right) \otimes i d_{K}\right) V_{t}^{\check{H}}
$$

It follows $\psi Y_{t}=0$ for every $t \in T_{n}$ ([2] Theorem 2.1.9 a)). Thus for every $t \in T_{n}$ there is a $Z_{t} \in F$ with $\varphi Z_{t}=Y_{t}$ and we get

$$
X=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, \varphi Z_{t}\right) \otimes i d_{K}\right) V_{t}^{\breve{G}}=
$$

$$
=\check{\varphi}_{n}\left(\sum_{t \in T_{n}}\left(\left(\alpha_{t}, Z_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{F}}\right) \in \operatorname{Im} \check{\varphi}_{n} \subset \operatorname{Im} \check{\varphi}_{\rightarrow} .
$$

c) By Corollary 6.2.3 a) and Proposition 6.2.2 e),

$$
K_{0}(\psi) \circ K_{0}(\varphi)=K_{0}(\psi \circ \varphi)=0
$$

so $\operatorname{Im} K_{0}(\varphi) \subset \operatorname{Ker} K_{0}(\psi)$. Let $a \in \operatorname{Ker} K_{0}(\psi)$. By Proposition 6.2.7 b), there is a $P \in$ $\operatorname{Pr} \check{G}_{\rightarrow}$ such that

$$
a=[P]_{0}-\left[\sigma_{\rightarrow}^{G} P\right]_{0}, \quad \check{\psi}_{\rightarrow} P=\sigma_{\rightarrow}^{H} \check{\psi}_{\rightarrow} P
$$

Then P has the form

$$
P=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, X_{t}\right) \otimes i d_{K}\right) V_{t}^{\breve{G}}
$$

for some $n \in \mathbb{N}$ with $\left(\alpha_{t}, X_{t}\right) \in E \times G$ for every $t \in T_{n}$, where we identified \check{G}_{n} with $\check{G}_{\rightarrow n}$. We get

$$
\sum_{t \in T_{n}}\left(\left(\alpha_{t}, \psi X_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{H}}=\check{\psi}_{\rightarrow} P=\sigma_{\rightarrow}^{H} \check{\psi}_{\rightarrow} P=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, 0\right) \otimes i d_{K}\right) V_{t}^{\check{H}}
$$

Thus $\psi X_{t}=0\left([2]\right.$ Theorem 2.1.9 a)) and there is an $Y_{t} \in F$ with $\varphi Y_{t}=X_{t}$ for every $t \in T_{n}$. We put

$$
Q:=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, Y_{t}\right) \otimes i d_{K}\right) V_{t}^{\breve{F}} \in \operatorname{Pr} \check{F}_{\rightarrow}
$$

with the usual identification ($\check{\varphi}$ is an embedding !). Then

$$
\check{\varphi}_{\rightarrow} Q=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, \varphi Y_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{G}}=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, X_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{G}}=P
$$

and by Proposition 6.2 .2 c) (since $\check{\varphi} \circ \sigma^{F}=\sigma^{G} \circ \check{\varphi}$),

$$
\begin{aligned}
& K_{0}(\varphi)\left([Q]_{0}-\left[\sigma_{\rightarrow}^{F} Q\right]_{0}\right)=\left[\check{\varphi}_{\rightarrow} Q\right]_{0}-\left[\check{\varphi}_{\rightarrow} \sigma_{\rightarrow}^{F} Q\right]_{0}= \\
& \quad=\left[\check{\varphi}_{\rightarrow} Q\right]_{0}-\left[\sigma_{\rightarrow}^{G} \breve{\varphi}_{\rightarrow} Q\right]_{0}=[P]_{0}-\left[\sigma_{\rightarrow}^{G} P\right]_{0}=a .
\end{aligned}
$$

Thus $\operatorname{Ker} K_{0}(\psi) \subset \operatorname{Im} K_{0}(\varphi), \operatorname{Ker} K_{0}(\psi)=\operatorname{Im} K_{0}(\varphi)$.

PROPOSITION 6.2.9 (Split Exact Theorem for K_{0}) If

$$
0 \longrightarrow F \xrightarrow{\varphi} G_{\gtrless}^{\stackrel{\psi}{\lambda}} H \longrightarrow 0
$$

Chapter 6 The Functor K_{0}
is a split exact sequence in \mathfrak{M}_{E} then

$$
0 \longrightarrow K_{0}(F) \xrightarrow{K_{0}(\varphi)} K_{0}(G) \stackrel{K_{0}(\psi)}{\stackrel{K_{0}(\lambda)}{乌}} K_{0}(H) \longrightarrow 0
$$

is also split exact. In particular the map

$$
K_{0}(F) \times K_{0}(H) \longrightarrow K_{0}(G), \quad(a, b) \longmapsto K_{0}(\varphi) a+K_{0}(\lambda) b
$$

is a group isomorphism and $K_{0}(\check{F}) \approx K_{0}(E) \times K_{0}(F)$ for every E - C^{*}-algebra F.

By Proposition 6.2 .8 c$)$, the second sequence is exact at $K_{0}(G)$. From

$$
K_{0}(\psi) \circ K_{0}(\lambda)=K_{0}(\psi \circ \lambda)=K_{0}\left(i d_{H}\right)=i d_{K_{0}(H)}
$$

(Corollary 6.2.3 a) and Proposition 6.2.2 d)) it follows that this sequence is (split) exact at $K_{0}(H)$.

Let $a \in \operatorname{Ker} K_{0}(\varphi)$. By Proposition 6.2.7 a), there are $n \in \mathbb{N}, P \in \operatorname{Pr} \check{F}_{\rightarrow n}$, and $U \in$ $U n_{0} \check{G}_{\rightarrow, n+2}$ such that

$$
a=[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0}, \quad U\left(\check{\varphi}_{\rightarrow} P\right) U^{*}=\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} P .
$$

Put

$$
V:=\left(\check{\lambda}_{\rightarrow} \check{\psi}_{\rightarrow} U^{*}\right) U \in U n \check{G}_{\rightarrow, n+2} .
$$

Then

$$
\check{\psi}_{\rightarrow} V=\left(\check{\psi}_{\rightarrow} U^{*}\right)\left(\check{\psi}_{\rightarrow} U\right)=1_{\rightarrow, n+2}, \quad \sigma_{\rightarrow}^{H} \check{\psi}_{\rightarrow} V=\check{\psi}_{\rightarrow} V .
$$

By Proposition 6.2.8 $b_{2} \Rightarrow b_{1}$, there is a $W \in U n \check{F}_{\rightarrow, n+2}$ with $\check{\varphi}_{\rightarrow} W=V$ (̌̌ is an embedding). We have

$$
\begin{gathered}
\check{\varphi}_{\rightarrow}\left(W P W^{*}\right)=V\left(\check{\varphi}_{\rightarrow} P\right) V^{*}=\left(\check{\lambda}_{\rightarrow} \check{\psi}_{\rightarrow} U^{*}\right) U\left(\check{\varphi}_{\rightarrow} P\right) U^{*}\left(\check{\lambda}_{\rightarrow} \check{\psi}_{\rightarrow} U\right)= \\
=\left(\check{\lambda}_{\rightarrow} \check{\psi}_{\rightarrow} U^{*}\right)\left(\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} P\right)\left(\check{\lambda}_{\rightarrow} \check{\psi}_{\rightarrow} U\right)=\check{\lambda}_{\rightarrow} \check{\psi}_{\rightarrow}\left(U^{*}\left(\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} P\right) U\right)= \\
=\check{\lambda}_{\rightarrow} \check{\psi}_{\rightarrow} \check{\varphi}_{\rightarrow} P=\sigma_{\rightarrow}^{G} \check{\varphi}_{\rightarrow} P=\check{\varphi}_{\rightarrow} \sigma_{\rightarrow}^{F} P .
\end{gathered}
$$

Since $\check{\varphi}_{\rightarrow}$ is injective (Proposition 6.2.8 a)),

$$
P \sim_{0} W P W^{*}=\sigma_{\rightarrow}^{F} P, \quad a=0
$$

and $K_{0}(\varphi)$ is injective.

The last assertion follows since

$$
0 \longrightarrow F \xrightarrow{I^{F}} \check{F} \underset{\lambda^{\circ}}{\stackrel{\pi^{F}}{\longrightarrow}} E \longrightarrow 0
$$

is a split exact sequence.

COROLLARY 6.2.10 Let F, G be $E-C^{*}$-algebras.
a) If we put

$$
\begin{array}{llll}
\imath_{1}: F \longrightarrow F \times G, & x \longmapsto(x, 0), & \pi_{1}: F \times G \longrightarrow F, & (x, y) \longmapsto x, \\
\imath_{2}: G \longrightarrow F \times G, & y \longmapsto(0, y), & \pi_{2}: F \times G \longrightarrow F, & (x, y) \longmapsto y,
\end{array}
$$

then the sequences

$$
\begin{aligned}
& 0 \longrightarrow K_{0}(F) \xrightarrow{K_{0}\left(t_{1}\right)} K_{0}(F \times G) \underset{\leftrightarrows}{\stackrel{K_{0}\left(\pi_{2}\right)}{K_{0}\left(t_{2}\right)}} K_{0}(G) \longrightarrow 0, \\
& 0 \longrightarrow K_{0}(G) \xrightarrow{K_{0}\left(t_{2}\right)} K_{0}(F \times G) \stackrel{K_{0}\left(\pi_{1}\right)}{\stackrel{K_{0}\left(t_{1}\right)}{\leftrightarrows}} K_{0}(F) \longrightarrow 0
\end{aligned}
$$

are split exact.
b) The map

$$
K_{0}(F) \times K_{0}(G) \longrightarrow K_{0}(F \times G), \quad(a, b) \longmapsto K_{0}\left(l_{1}\right) a+K_{0}\left(l_{2}\right) b
$$

is a group isomorphism (Product Theorem for K_{0}).
a) is easy to see.
b) follows from a) and Proposition 6.2.9.

THEOREM 6.2.11 (Homotopy invariance of K_{0})

a) If $\varphi, \psi: F \longrightarrow G$ are homotopic morphisms in \mathfrak{M}_{E}, then $K_{0}(\varphi)=K_{0}(\psi)$.
b) If $F \stackrel{\varphi}{\longrightarrow} G, G \xrightarrow{\psi} F$ is a homotopy in \mathfrak{M}_{E} then

$$
K_{0}(\varphi) \circ K_{0}(\psi)=i d_{K_{0}(G)}, \quad K_{0}(\psi) \circ K_{0}(\varphi)=i d_{K_{0}(F)}
$$

Chapter 6 The Functor K_{0}
c) If F and G are homotopic $E-C^{*}$-algebras then $K_{0}(F)$ and $K_{0}(G)$ are isomorphic.
d) If F is an $E-C^{*}$-algebra such that $i d_{F}$ is homotopic to

$$
0_{F}: F \longrightarrow F, \quad x \longmapsto 0
$$

then F is homotopic to $\{0\}$.
e) If the $E-C^{*}$-algebra F is homotopic to $\{0\}$ then $K_{0}(F)=\{0\}$.
a) Let

$$
\phi_{s}: F \longrightarrow G, \quad s \in[0,1]
$$

be a pointwise continuous path of morphisms in \mathfrak{M}_{E} such that $\phi_{0}=\varphi, \phi_{1}=\psi$. Then

$$
\check{\phi}_{s}: \check{F} \longrightarrow \check{G}, \quad s \in[0,1]
$$

is a pointwise continuous path of morphisms in \mathfrak{C}_{E} with $\check{\phi}_{0}=\check{\varphi}, \check{\phi}_{1}=\check{\psi}$ and for every $n \in \mathbb{N}$,

$$
\left(\check{\phi}_{s}\right)_{\rightarrow n}:(\check{F})_{\rightarrow n} \longrightarrow(\check{G})_{\rightarrow n}, \quad s \in[0,1]
$$

is a pointwise continuous path in \mathfrak{C}_{E} with $\left(\check{\phi_{0}}\right)_{\rightarrow n}=(\check{\varphi})_{\rightarrow n}$ and $\left(\check{\phi_{1}}\right)_{\rightarrow n}=(\check{\psi})_{\rightarrow n}$. For every $P \in \operatorname{Pr} \check{F}_{\rightarrow n}$,

$$
[0,1] \longrightarrow \operatorname{Pr}(\check{G})_{\rightarrow n}, \quad s \longmapsto\left(\check{\phi}_{s}\right)_{\rightarrow n} P
$$

is continuous so (by [4] Proposition 2.2.7)

$$
K_{0}(\varphi)[P]_{0}=\left[\varphi_{\rightarrow} P\right]_{0}=\left[\psi_{\rightarrow} P\right]_{0}=K_{0}(\psi)[P]_{0}
$$

(Proposition 6.2.2 c)). By Proposition 6.2.4, $K_{0}(\varphi)=K_{0}(\psi)$.
b) follows from a), Corollary 6.2.3 a), and Proposition 6.2.2 d).
c) follows from b).
d) If we put $\varphi: F \longrightarrow\{0\}$ and $\psi:\{0\} \longrightarrow F$ then $\psi \circ \varphi=0_{F}$ is homotopic to $i d_{F}$ and $\varphi \circ \psi$ is homotopic to $i d_{\{0\}}$, so F is homotopic to $\{0\}$.
e) follows from c).

We show now that K_{0} is continuous with respect to inductive limits.

THEOREM 6.2.12 (Continuity of $\left.K_{0}\right)$ Let $\left\{\left(F_{i}\right)_{i \in I},\left(\varphi_{i j}\right)_{i, j \in I}\right\}$ be an inductive system in \mathfrak{M}_{E} and let $\left\{F,\left(\varphi_{i}\right)_{i \in I}\right\}$ be its inductive limit in \mathfrak{M}_{E}. By Corollary 6.2.3 a),

$$
\left\{\left(K_{0}\left(F_{i}\right)\right)_{i \in I},\left(K_{0}\left(\varphi_{i j}\right)\right)_{i, j \in I}\right\}
$$

is an inductive system in the category of additive groups. Let $\left\{\mathscr{G},\left(\psi_{i}\right)_{i \in I}\right\}$ be its limit in this category and let $\psi: \mathscr{G} \longrightarrow K_{0}(F)$ be the group homomorphism such that $\psi \circ \psi_{i}=$ $K_{0}\left(\varphi_{i}\right)$ for every $i \in I$. Then ψ is a group isomorphism.
$\left\{\left(\breve{F}_{i}\right)_{i \in I},\left(\breve{\varphi}_{i j}\right)_{i, j \in I}\right\}$ is an inductive system in \mathfrak{C}_{E} and by [2] Proposition 1.2.9 b), $\left\{\check{F},\left(\breve{\varphi}_{i}\right)_{i \in I}\right\}$ may be identified with its inductive limit in \mathfrak{C}_{E}. By[2] Proposition 2.3.5, for every $n \in \mathbb{N}, \quad\left\{\left(\left(\check{F}_{i}\right)_{\rightarrow n}\right)_{i \in I},\left(\left(\check{\varphi}_{i j}\right)_{\rightarrow n}\right)_{i, j \in I}\right\}$ is an inductive system in \mathfrak{C}_{E} and $\left\{\left(\check{F}_{\rightarrow n},\left(\left(\breve{\varphi}_{i}\right)_{\rightarrow n}\right)_{i \in I}\right\}\right.$ may be identified with its inductive limit in \mathfrak{C}_{E}.

Step 1ψ is surjective

Let $Q \in \operatorname{Pr}(\check{F})_{\rightarrow n}$. By [5] L.2.2, there are $i \in I$ and $P \in \operatorname{Pr}\left(\check{F}_{i}\right)_{\rightarrow n}$ such that $\left\|\left(\check{\varphi}_{i}\right)_{\rightarrow n} P-Q\right\|<1$, so by [4] Proposition 2.2.4, $\left(\check{\varphi}_{i}\right)_{\rightarrow n} P \sim_{0} Q$. By Proposition 6.2.2 b), c)

$$
\psi \psi_{i}[P]_{0}=K_{0}\left(\varphi_{i}\right)[P]_{0}=K_{0}\left(\check{\varphi}_{i}\right)[P]_{0}=\left[\left(\check{\varphi}_{i}\right)_{\rightarrow n} P\right]_{0}=[Q]_{0} .
$$

Since

$$
\operatorname{Pr} \check{F}_{\rightarrow}=\bigcup_{n \in \mathbb{N}} \operatorname{Pr}(\check{F})_{\rightarrow n},
$$

ψ is surjective.

Step 2ψ is injective

Let $a \in \mathscr{G}$ with $\psi a=0$. Since $\mathscr{G}=\bigcup_{i \in I} \operatorname{Im} \psi_{i}$, there is an $i \in I$ and an $a_{i} \in K_{0}\left(F_{i}\right)$ with $a=\psi_{i} a_{i}$. There are $n \in \mathbb{N}$ and $P, Q \in \operatorname{Pr}\left(\check{F}_{i}\right)_{\rightarrow n}$ such that

$$
a_{i}=[P]_{0}-[Q]_{0}
$$

(by Proposition 6.1 .5 c)). By Proposition 6.2.2 c),

$$
0=\psi a=\psi \psi_{i} a=K_{0}\left(\varphi_{i}\right) a=K_{0}\left(\varphi_{i}\right)[P]_{0}-K_{0}\left(\varphi_{i}\right)[Q]_{0}=
$$

Chapter 6 The Functor K_{0}

$$
=\left[\left(\check{\varphi}_{i}\right)_{\rightarrow n} P\right]_{0}-\left[\left(\check{\varphi}_{i}\right)_{\rightarrow n} Q\right]_{0} .
$$

By Corollary 6.1.6 $\mathrm{a} \Rightarrow \mathrm{b}$, there is an $R \in \operatorname{Pr}\left(\check{F}_{i}\right)_{\rightarrow}$ such that

$$
P R=Q R=0, \quad P+R \sim_{0} Q+R
$$

and we get

$$
a=[P]_{0}+[R]_{0}-[Q]_{0}-[R]_{0}=[P+R]_{0}-[Q+R]_{0}=0 .
$$

6.3 Stability of K_{0}

The stability of K_{0} holds only under strong supplementary hypotheses. We present below such possible hypotheses, which we fix for this section. We shell give only a sketch of the proof.

Let S be a finite group, $\chi: \mathbf{Z}_{2} \times \mathbf{Z}_{2} \longrightarrow S$ an injective group homomorphism,

$$
a:=\omega(1,0), \quad b:=\omega(0,1), \quad c:=\omega(1,1)
$$

and g a Schur E-function for S such that

$$
g(a, b)=g(a, c)=g(b, c)=-g(b, a)=1_{E} .
$$

We put for every $n \in \mathbb{N}$,

$$
\begin{gathered}
T_{n}:=S^{n}=\left\{t \in S^{\mathbb{N}} \mid m \in \mathbb{N}, m>n \Rightarrow t_{m}=1\right\}, \\
T:=\bigcup_{n \in \mathbb{N}} T_{n}=\left\{t \in S^{\mathbb{N}} \mid\left\{n \in \mathbb{N}, t_{n} \neq 1\right\} \text { is finite }\right\}, \\
f: T \times T \longrightarrow E, \quad(s, t) \longmapsto \prod_{n \in \mathbb{N}} g\left(s_{n}, t_{n}\right), \\
\quad \frac{n}{s:}: \mathbb{N} \longrightarrow S, \quad m \longmapsto\left\{\begin{array}{rr}
s & \text { if } \\
1 & \text { if } \\
1 \neq n
\end{array}\right.
\end{gathered}
$$

for every $s \in S$, and

$$
C_{n}:=\frac{1}{2}\left(V_{\frac{n}{a}}^{f}+V_{\frac{n}{b}}^{f}\right), \quad A_{n}:=C_{n}^{*} C_{n}, \quad B_{n}:=C_{n} C_{n}^{*}
$$

Then f is a Schur E-function for T and the following hold for all $s, t \in S$ and $n \in \mathbb{N}$:

$$
\begin{gathered}
f\left(\frac{n}{s}, \frac{n}{t}\right)=g(s, t), \\
\frac{n}{t}=1 \Longrightarrow V_{\frac{n}{s}}^{f} V_{\frac{n}{t}}^{f}=V_{\frac{n}{t}}^{f} V_{\frac{n}{s}}^{f}, \\
s \in T_{n-1} \Longrightarrow V_{s}^{f} V_{\frac{n}{t}}=V_{\frac{n}{t}}^{\frac{1}{t}} V_{s}^{f}, \\
A_{n}=\frac{1}{2}\left(V_{1}^{f}+V_{\frac{n}{c}}^{f}\right) \in \operatorname{Pr} E_{n}, \quad \quad B_{n}=\frac{1}{2}\left(V_{1}^{f}-V_{\frac{n}{c}}^{f}\right) \in \operatorname{Pr} E_{n}, \\
A_{n}+B_{n}=V_{1}^{f}=1_{E},
\end{gathered}
$$

so the assumptions of Axiom 5.0.3 are fulfilled.
Remark. If χ is bijective and $E=\mathbf{C}$ then the corresponding projective K-theory coincides with the usual K-theory.

PROPOSITION 6.3.1 Let F be an full $E-C^{*}$-algebra and $m, n \in \mathbb{N}$. We define

$$
\begin{aligned}
& \alpha:=\alpha_{m, n}^{F}:\left(F_{m}\right)_{n} \longrightarrow F_{m+n}, \\
& \beta:=\beta_{m, n}^{F}: F_{m+n} \longrightarrow\left(F_{m}\right)_{n},
\end{aligned}
$$

by

$$
(\alpha X)_{(s, t)}:=\left(X_{t}\right)_{s}, \quad\left((\beta Y)_{t}\right)_{s}:=Y_{(s, t)}
$$

for every $X \in\left(F_{m}\right)_{n}, Y \in F_{m+n}$, and $(s, t) \in S^{m} \times S^{n}=S^{m+n}$, where the identification is given by the bijective map

$$
S^{m} \times S^{n} \longrightarrow S^{m+n}, \quad(s, t) \longmapsto\left(s_{1}, \cdots, s_{m}, t_{1}, \cdots, t_{n}\right) .
$$

a) α and β are $E-C^{*}$-isomorphisms and $\alpha=\beta^{-1}$.
b) $\alpha A_{n}=A_{m+n}$.
c) The diagram

$$
\begin{array}{lll}
\left(F_{m}\right)_{n-1} & \xrightarrow{\alpha_{m, n-1}^{F}} & F_{m+n-1} \\
\bar{\rho}_{n}^{F_{m}} \downarrow & & \downarrow^{\prime} \bar{\rho}_{m+n}^{F} \\
\left(F_{m}\right)_{n} & \xrightarrow[\alpha_{m, n}^{F}]{ } & F_{m+n}
\end{array}
$$

is commutative.

Chapter 6 The Functor K_{0}

It is obvious that α and β are E-linear and $\alpha \circ \beta=i d_{F_{m+n}}, \beta \circ \alpha=i d_{\left(F_{m}\right)_{n}}$. Thus α and β are bijective and $\alpha=\beta^{-1}$.

For $X, Y \in\left(F_{m}\right)_{n}$ and $(s, t) \in S^{m} \times S^{n}$, by [2] Theorem 2.1.9 c),g),

$$
\begin{aligned}
& \left(\alpha X^{*}\right)_{(s, t)}=\left(\left(X^{*}\right)_{t}\right)_{s}=\left(\tilde{f}(t)\left(X_{t^{-1}}\right)^{*}\right)_{s}=\tilde{f}(s) \tilde{f}(t)\left(\left(X_{t^{-1}}\right)_{s^{-1}}\right)^{*}= \\
& =\tilde{f}((s, t))\left(\alpha X_{(s, t)^{-1}}\right)^{*}=\left((\alpha X)^{*}\right)_{(s, t)}, \\
& ((\alpha X)(\alpha Y))_{(s, t)}= \\
& =\sum_{(u, v) \in S^{m} \times S^{n}} f\left((u, v),\left(u^{-1} s, v^{-1} t\right)\right)(\alpha X)_{(u, v)}(\alpha Y)_{\left(u^{-1} s, v^{-1} t\right)}= \\
& =\sum_{(u, v) \in S^{m} \times S^{n}} f\left(u, u^{-1} s\right) f\left(v, v^{-1} t\right)\left(X_{v}\right)_{u}\left(Y_{v^{-1} t}\right)_{u^{-1} s}= \\
& =\sum_{v \in S^{n}} f\left(v, v^{-1} t\right)\left(X_{v} Y_{v^{-1} t}\right)_{s}= \\
& =\left(\sum_{v \in S^{n}} f\left(v, v^{-1} t\right) X_{v} Y_{v^{-1} t}\right) s=\left((X Y)_{t}\right)_{s}=(\alpha(X Y))_{(s, t)}
\end{aligned}
$$

so α is a C^{*}-homomorphism and the assertion follows.
b) follows from the definition of A_{n} and A_{m+n}.
c) follows from b).

PROPOSITION 6.3.2 Let $F \xrightarrow{\varphi} G$ be a morphism in \mathfrak{C}_{E} and $m, n \in \mathbb{N}$. With the notation of Proposition 6.3.1 the diagram

is commutative.

For $X \in\left(F_{m}\right)_{n}$ and $(s, t) \in S^{m} \times S^{n}=S^{m+n}$,

$$
\left(\varphi_{m+n} \alpha_{m, n}^{F} X\right)_{(s, t)}=\varphi\left(\alpha_{m, n}^{F} X\right)_{(s, t)}=\varphi\left(X_{t}\right)_{s}=
$$

$$
=\left(\varphi_{m} X_{t}\right)_{s}=\left(\left(\left(\varphi_{m}\right)_{n} X\right)_{t}\right)_{s}=\left(\alpha_{m, n}^{G}\left(\varphi_{m}\right)_{n} X\right)_{(s, t)}
$$

so

$$
\varphi_{m+n} \circ \alpha_{m, n}^{F}=\alpha_{m, n}^{G} \circ\left(\varphi_{m}\right)_{n}
$$

THEOREM 6.3.3 (Stability for K_{0}) If $F \xrightarrow{\varphi} G$ is a morphism in \mathfrak{M}_{E} and $n \in \mathbb{N}$ then

$$
K_{0}\left(F_{n}\right) \approx K_{0}(F), \quad K_{0}\left(G_{n}\right) \approx K_{0}(G), \quad K_{0}\left(\varphi_{n}\right) \approx K_{0}(\varphi)
$$

Remark. If $\left(F_{\infty},\left(\rho_{n}^{F}\right)_{n \in \mathbb{N}}\right)$ and $\left(G_{\infty},\left(\rho_{n}^{G}\right)_{n \in \mathbb{N}}\right)$ denote the inductive limits in \mathfrak{M}_{E} of the corresponding inductive systems $\left(\left(F_{n}\right)_{n \in \mathbb{N}},\left(\rho_{n, m}^{F}\right)_{n, m \in \mathbb{N}}\right)$ and $\left(\left(G_{n}\right)_{n \in \mathbb{N}},\left(\rho_{n, m}^{G}\right)_{n, m \in \mathbb{N}}\right)$ then, with obvious notation,

$$
K_{0}\left(F_{\infty}\right) \approx K_{0}(F), \quad K_{0}\left(G_{\infty}\right) \approx K_{0}(G), \quad K_{0}\left(\varphi_{\infty}\right) \approx K_{0}(\varphi)
$$

Chapter 7

The Functor K_{1}

7.1 Definition of K_{1}

PROPOSITION 7.1.1 If F is a full $E-C^{*}$-algebra and $n \in \mathbb{N}$ then

$$
\bar{\tau}_{n}^{F}: U n F_{n-1} \longrightarrow U n F_{n}, \quad U \longmapsto A_{n} U+B_{n}
$$

is an injective group homomorphism with

$$
\bar{\tau}_{n}^{F}\left(U n_{E_{n-1}} F_{n-1}\right) \subset U n_{E_{n}} F_{n}
$$

For $U, V \in U n F_{n}$ we put $U \sim_{1} V$ if $U V^{*}, U^{*} V \in U n E_{n} . \sim_{1}$ is an equivalence relation and \sim_{h} implies \sim_{1}.

For $U, V \in U n F_{n-1}$,

$$
\begin{gathered}
\bar{\tau}_{n}^{F} U^{*}=A_{n} U^{*}+B_{n}=\left(\bar{\tau}_{n}^{F} U\right)^{*} \\
\left(\bar{\tau}_{n}^{F} U\right)\left(\bar{\tau}_{n}^{F} V\right)=\left(A_{n} U+B_{n}\right)\left(A_{n} V+B_{n}\right)=A_{n} U V+B_{n}=\bar{\tau}_{n}^{F}(U V), \\
\left(\bar{\tau}_{n}^{F} U\right)\left(\bar{\tau}_{n}^{F} U\right)^{*}=\left(\bar{\tau}_{n}^{F} U\right)^{*}\left(\bar{\tau}_{n}^{F} U\right)=A_{n}+B_{n}=1_{F_{n}}
\end{gathered}
$$

i.e. $\bar{\tau}_{n}^{F}$ is well-defined and it is a group homomorphism. If $\bar{\tau}_{n}^{F} U=1_{F_{n}}$ then

$$
A_{n} U+B_{n}=\bar{\tau}_{n}^{F} U=1_{F_{n}}=1_{E}=A_{n}+B_{n}, \quad A_{n} U=A_{n}
$$

so by Proposition 6.1 .1 c$), U=1_{F_{n-1}}=1_{E}$ and $\bar{\tau}_{n}^{F}$ is injective.

The other assertions are obvious.

DEFINITION 7.1.2 Let F be a full E - C^{*}-algebra. We put for all $m, n \in \mathbb{N}, m<n$,

$$
\tau_{n, m}^{F}:=\bar{\tau}_{n}^{F} \circ \bar{\tau}_{n-1}^{F} \circ \cdots \circ \bar{\tau}_{m+1}^{F}: U n F_{m} \longrightarrow U n F_{n} .
$$

Then $\left\{\left(U n F_{n}\right)_{n \in \mathbb{N}},\left(\tau_{n, m}\right)_{m, n \in \mathbb{N}}\right\}$ is an inductive system of groups with injective maps. We denote by $\left\{u n F,\left(\tau_{n}^{F}\right)_{n \in \mathbb{N}}\right\}$ its inductive limit. τ_{n}^{F} is injective for every $n \in \mathbb{N}$, so $\left(\tau_{n}^{F}\left(U n F_{n}\right)\right)_{n \in \mathbb{N}}$ is an increasing sequence of subgroups of un F, the union of which is un F. We put for every $n \in \mathbb{N}$ and $U \in U n F_{n}$,

$$
\begin{gathered}
U n F_{\leftarrow n}:=\tau_{n}^{F}\left(U n F_{n}\right), \quad U_{\leftarrow}:=U_{\leftarrow n}:=U_{\leftarrow n}^{F}:=\tau_{n}^{F} U, \\
1_{\leftarrow n}:=1_{\leftarrow n}^{F}:=\tau_{n}^{F} 1_{F_{n}}\left(=\tau_{n}^{F} 1_{E}\right) .
\end{gathered}
$$

$\left(\tau_{n}^{F}\left(U n_{E_{n}} F_{n}\right)\right)_{n \in \mathbb{N}}$ is an increasing sequence of subgroups of un F; we denote by un $n_{E} F$ their union.

Chapter 7 The Functor K_{1}

We often identify $U n F_{n}$ with $U n F_{\leftarrow n}$.

PROPOSITION 7.1.3 For $m, n \in \mathbb{N}, m<n$, and $U \in U n F_{m}$,

$$
\tau_{n, m}^{F} U=\left(\prod_{i=m+1}^{n} A_{i}\right) U+\left(1_{E}-\prod_{i=m+1}^{n} A_{i}\right) .
$$

We prove this identity by induction with respect to n. The identity holds for $n:=m+1$. Assume it holds for $n-1 \geq m$. Then

$$
\begin{gathered}
\tau_{n, m}^{F} U=\bar{\tau}_{n}^{F} \tau_{n-1, m}^{F} U=A_{n} \tau_{n-1, m}^{F} U+B_{n}= \\
=A_{n}\left(\left(\prod_{i=m+1}^{n-1} A_{i}\right) U+\left(1_{E}-\prod_{i=m+1}^{n-1} A_{i}\right)\right)+B_{n}= \\
=\left(\prod_{i=m+1}^{n} A_{i}\right) U+\left(1_{E}-\prod_{i=m+1}^{n} A_{i}\right)
\end{gathered}
$$

PROPOSITION 7.1.4 Let F be a full $E-C *$ algebra.
a) If $U, V \in U n F_{n-1}$ for some $n \in \mathbb{N}$ then

$$
\bar{\tau}_{n}^{F}(U V) \sim_{h} \bar{\tau}_{n}^{F}(V U), \quad \quad \bar{\tau}_{n}^{F}\left(U V U^{*}\right) \sim_{h} \bar{\tau}_{n}^{F}(V)
$$

b) $u n_{E} F$ is a normal subgroup of un F and un $F / u n_{E} F$ is commutative.
c) For all $U, V \in$ un F,

$$
U V^{*} \in u n_{E} F \Longleftrightarrow U^{*} V \in u n_{E} F .
$$

We put $U \sim_{1} V$ if $U V^{*} \in u_{E} F . \sim_{1}$ is an equivalence relation.
a) By Proposition 6.2 .5 a),b),

$$
\begin{gathered}
\bar{\tau}_{n}^{F}(U V)=A_{n} U V+B_{n}=\left(A_{n} U+B_{n}\right)\left(A_{n} V+B_{n}\right) \sim_{h} \\
\sim_{h}\left(A_{n} U+B_{n}\right)\left(A_{n}+B_{n} V\right)=A_{n} U+B_{n} V \sim_{h} A_{n} V+B_{n} U \sim_{h} \bar{\tau}_{n}^{F}(V U) .
\end{gathered}
$$

It follows

$$
\bar{\tau}_{n}^{F}\left(U V U^{*}\right) \sim_{h} \bar{\tau}_{n}^{F}\left(U^{*} U V\right)=\bar{\tau}_{n}^{F}(V)
$$

b) $u n_{E} F$ is obviously a subgroup of $u n F$. The other assertions follow from a).
c) Let $q:$ un $F \rightarrow$ un $F / u n_{E} F$ be the quotient map. If $U V^{*} \in u n_{E} F$ then by b),

$$
\begin{gathered}
q\left(U V^{*}\right)=q(U) q\left(V^{*}\right)=q\left(V^{*}\right) q(U)=q\left(V^{*} U\right), \\
V^{*} U \in u n_{E} F, \quad U^{*} V=\left(V^{*} U\right)^{*} \in u n_{E} F
\end{gathered}
$$

DEFINITION 7.1.5 We denote for every $E-C^{*}$-algebra F by $K_{1}(F)$ the additive group obtained from the commutative group un $\check{F} / u n_{E} \check{F}$ (Proposition 7.1 .4 b)) by replacing the multiplication with the addition \oplus; by this the neutral element (which corresponds to 1_{E}) is denoted by 0 . For every $U \in$ un \check{F} we denote by $[U]_{1}$ its equivalence class in $K_{1}(F)$.

Remark. Let F be a full E-C*-algebra. By Proposition 4.1.2 d), \check{F} is isomorphic to $E \times F$, so in this case we may define K_{1} using F instead of \check{F} (as we did for K_{0}).

PROPOSITION 7.1.6 Let $F \xrightarrow{\varphi} G$ be a morphism in \mathfrak{M}_{E}.
a) For $m, n \in \mathbb{N}, m<n$, the diagram

$$
\begin{aligned}
& U n \check{F}_{m} \xrightarrow{\tau_{n, m}^{\check{\prime}}} U n \check{F}_{n} \\
& \check{\varphi}_{m} \downarrow \\
& U n \check{G}_{m} \xrightarrow[\tau_{n, m}^{\check{G}}]{ } U n \check{G}_{n}
\end{aligned}
$$

is commutative. Thus there is a unique group homomorphism

$$
\check{\varphi}_{\leftarrow}: u n \check{F} \longrightarrow u n \check{G}
$$

such that

$$
\check{\varphi}_{\leftarrow} \circ \tau_{n}^{\check{F}}=\tau_{n}^{\check{G}} \circ \check{\varphi}_{n}
$$

for every $n \in \mathbb{N}$.

Chapter 7 The Functor K_{1}
b) $\varphi_{\leftarrow}\left(u n_{E} \check{F}\right) \subset u n_{E} \check{G}$; if φ is surjective then $\varphi_{\leftarrow}\left(u n_{E} \check{F}\right)=u n_{E} \check{G}$.
c) There is a unique group homomorphism

$$
K_{1}(\varphi): K_{1}(F) \longrightarrow K_{1}(G)
$$

such that

$$
K_{1}(\varphi)[U]_{1}=\left[\check{\varphi}_{\leftarrow U} U\right]_{1}
$$

for every $U \in u n \check{F}$.
d) $K_{1}\left(i d_{F}\right)=i d_{K_{1}(F)}$.
e) $K_{1}(\{0\})=\{0\}$.
a) It is sufficient to prove the assertion for $n=m+1$. For $U \in U n \check{F}_{m}$,

$$
\tau_{n, m}^{\check{G}} \check{\varphi}_{m} U=A_{n}\left(\check{\varphi}_{m} U\right)+B_{n}=\check{\varphi}_{n}\left(A_{n} U+B_{n}\right)=\check{\varphi}_{n} \tau_{n, m}^{\check{F}} U .
$$

b) Since $\check{\varphi}_{n}\left(U n_{E_{n}} \check{F}_{n}\right) \subset U n_{E_{n}} \check{G}_{n}$ for every $n \in \mathbb{N}$, it follows $\varphi_{\leftarrow}\left(u n_{E} \check{F}\right) \subset u n_{E} \check{G}$. If φ is surjective then by [4] Lemma 2.1.7 (iii), we may replace the above inclusion relation by $=$.
c) follows from a) and b).
d) is obvious.
e) follows from $u n E=u n_{E} E$.

DEFINITION 7.1.7 An E-C*-algebra F is called \mathbf{K}-null if

$$
K_{0}(F)=K_{1}(F)=0 .
$$

Let $F \xrightarrow{\varphi} G$ be a morphism in \mathfrak{M}_{E}. We say that φ is \mathbf{K}-null if

$$
K_{0}(\varphi)=K_{1}(\varphi)=0
$$

We say that φ factorizes through null if there are morphisms $F \xrightarrow{\varphi^{\prime}} H \xrightarrow{\varphi^{\prime \prime}} G$ in \mathfrak{M}_{E} such that $\varphi=\varphi^{\prime \prime} \circ \varphi^{\prime}$ and His K-null.

PROPOSITION 7.1.8

a) If $F \xrightarrow{\varphi} G \xrightarrow{\psi} H$ are morphisms in \mathfrak{M}_{E} then

$$
\check{\psi}_{\leftarrow} \circ \check{\varphi}_{\leftarrow}=(\check{\psi} \circ \check{\varphi})_{\leftarrow}=(\overbrace{\psi \circ \varphi}) \leftarrow, \quad K_{1}(\psi) \circ K_{1}(\varphi)=K_{1}(\psi \circ \varphi) .
$$

b) If $\varphi=0$ then $K_{1}(\varphi)=0$.
c) (Homotopy invariance of K_{1}) If $\varphi, \psi: F \longrightarrow G$ are homotopic morphisms in \mathfrak{M}_{E} then

$$
K_{1}(\varphi)=K_{1}(\psi)
$$

d) (Homotopy invariance of K_{1}) If $F \xrightarrow{\varphi} G \xrightarrow{\psi} F$ is a homotopy in \mathfrak{M}_{E} then

$$
K_{1}(\varphi): K_{1}(F) \longrightarrow K_{1}(G), \quad K_{1}(\psi): K_{1}(G) \longrightarrow K_{1}(F)
$$

are isomorphisms and $K_{1}(\psi)=K_{1}(\varphi)^{-1}$.
e) If the $E-C^{*}$-algebra F is homotopic to $\{0\}$ then F is K-null.
f) If a morphism in \mathfrak{M}_{E} factorizes through null then it is K-null.
a) Since

$$
\check{\psi}_{n} \circ \check{\varphi}_{n}=(\check{\psi} \circ \check{\varphi})_{n}=(\overbrace{\psi \circ \varphi}^{\check{\varphi}})_{n}
$$

for every $n \in \mathbb{N}$ we get

$$
\check{\psi}_{\leftarrow} \circ \check{\varphi}_{\leftarrow}=(\check{\psi} \circ \check{\varphi})_{\leftarrow}=(\overbrace{\psi \circ \varphi}^{\check{\varphi}}) \leftarrow .
$$

For $U \in u n \check{F}$, by Proposition 7.1 .6 c),

$$
\begin{aligned}
& K_{1}(\psi) K_{1}(\varphi)[U]_{1}=K_{1}(\psi)\left[\check{\varphi}_{\leftarrow} \leftarrow\right]_{1}=\left[\check{\psi}_{\leftarrow} \check{\varphi} \leftarrow U\right]_{1}= \\
= & {\left[(\check{\psi} \circ \check{\varphi})_{\leftarrow} \leftarrow U\right]_{1}=[(\overbrace{\psi \circ \varphi}) \leftarrow U]_{1}=K_{1}(\psi \circ \varphi)[U]_{1}, }
\end{aligned}
$$

so $K_{1}(\psi) \circ K_{1}(\varphi)=K_{1}(\psi \circ \varphi)$.
b) If we put $\vartheta: F \longrightarrow\{0\}, \imath:\{0\} \longrightarrow G$ then $\varphi=\imath \circ \vartheta$ and by a) and Proposition 7.1.6 e), $K_{1}(\varphi)=0$.

Chapter 7 The Functor K_{1}
c) Let

$$
\phi_{s}: F \longrightarrow G, \quad s \in[0,1]
$$

be a pointwise continuous path of morphisms in \mathfrak{M}_{E} with $\phi_{0}=\varphi$ and $\phi_{1}=\psi$. Let $n \in$ IN . Then

$$
\left(\check{\phi}_{s}\right)_{n}: \check{F}_{n} \longrightarrow \check{G}_{n}, \quad s \in[0,1]
$$

is a pointwise continuous path of E-C*-homomorphisms with $\left(\check{\phi}_{0}\right)_{n}=\check{\varphi}_{n}$ and $\left(\check{\phi}_{1}\right)_{n}=\check{\psi}_{n}$. For every $U \in U n \check{F}_{n}$, the map

$$
\vartheta:[0,1] \longrightarrow U n \check{G}_{n}, \quad s \longmapsto\left(\check{\phi}_{s}\right)_{n} U
$$

is continuous and $\vartheta(0)=\check{\varphi}_{n} U, \vartheta(1)=\check{\psi}_{n} U$, i.e. $\check{\varphi}_{n} U$ and $\check{\varphi}_{n} U$ are homotopic in $U n \check{G}_{n}$. It follows

$$
K_{1}(\varphi)\left[\tau_{n}^{\breve{F}} U\right]_{1}=K_{1}(\psi)\left[\tau_{n}^{\check{F}} U\right]_{1}
$$

which implies $K_{1}(\varphi)=K_{1}(\psi)$.
d) follows from c) and Proposition 7.1.6 d).
e) By d) and Proposition 7.1.6 e), $K_{1}(F)=\{0\}$. By the Homotopy invariance of K_{0} (Theorem 6.2.11 e)), F is K-null.
f) follows immediately from a), e), and Corollary 6.2.3 a).

PROPOSITION 7.1.9 If

$$
0 \longrightarrow F \xrightarrow{\varphi} G \xrightarrow{\psi} H \longrightarrow 0
$$

is an exact sequence in \mathfrak{M}_{E} then

$$
K_{1}(F) \xrightarrow{K_{1}(\varphi)} K_{1}(G) \xrightarrow{K_{1}(\psi)} K_{1}(H)
$$

is also exact.

Let $a \in \operatorname{Ker} K_{1}(\psi)$ and let $U \in u n \check{G}$ with $a=[U]_{1}$. By Proposition 7.1.6 c),

$$
0=K_{1}(\psi) a=\left[\check{\psi}_{\leftarrow U}\right]_{1}, \quad \check{\psi}_{\leftarrow}, U \in u n_{E} \check{H} .
$$

By Proposition 7.1.6 b), there is a $V \in u n_{E} \check{G}$ with $\check{\psi}_{\leftarrow} V=\check{\psi}_{\leftarrow} U$. We put $W:=U V^{*}$. By Proposition 7.1.4 c), $[W]_{1}=a$ and so

$$
\check{\psi}_{\leftarrow W}=\left(\check{\psi}_{\leftarrow} U\right)\left(\check{\psi}_{\leftarrow} V\right)^{*}=1_{E} .
$$

W has the form

$$
W=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, X_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{G}}
$$

for some $n \in \mathbb{N}$, where $\left(\alpha_{t}, X_{t}\right) \in E \times G$ for every $t \in T_{n}$. We get

$$
1_{E}=\check{\psi}_{n} W=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, \psi X_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{H}}
$$

and so by [2] Theorem 2.1.9 a), $\psi X_{t}=0$ for every $t \in T_{n}$. For every $t \in T_{n}$, let $Y_{t} \in F$ with $\varphi Y_{t}=X_{t}$ and put

$$
W^{\prime}:=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, Y_{t}\right) \otimes i d_{K}\right) V_{t}^{\check{F}}
$$

Since $\check{\varphi}: \breve{F} \longrightarrow \breve{G}$ is an embedding, $W^{\prime} \in U n \check{F}_{\leftarrow n}$ and by Proposition 7.1.6 c),

$$
K_{1}(\varphi)\left[W^{\prime}\right]_{1}=\left[\check{\varphi}_{n} W^{\prime}\right]_{1}=[W]_{1}=a
$$

Thus $\operatorname{Ker} K_{1}(\psi) \subset \operatorname{Im} K_{1}(\varphi)$.
Let now $U \in u n \check{F}_{\leftarrow}$. By Proposition 7.1.8 a),b),

$$
K_{1}(\psi) K_{1}(\varphi)[U]_{1}=K_{1}(\psi \circ \varphi)[U]_{1}=K_{1}(0)[U]_{1}=0
$$

so $\operatorname{Im} K_{1}(\varphi) \subset \operatorname{Ker} K_{1}(\psi)$.

PROPOSITION 7.1.10 The following are equivalent for every full E - C^{*}-algebra F.
a) $K_{1}(F)=\{0\}$.
b) For every $n \in \mathbb{N}$ and $U \in U n F_{n}$ there is an $m \in \mathbb{N}, m>n$, with $\tau_{m, n}^{F} U \sim_{h} 1_{E}$ in $U n F_{m}$.
$a \Rightarrow b$ Since

$$
\left(1_{E}, U\right) \in U n E_{n} \times U n F_{n}=U n\left(E_{n} \times F_{n}\right)=U n(E \times F)_{n},
$$

Chapter 7 The Functor K_{1}
it follows from Proposition 4.1.2 d), $\left(1_{E}, U-1_{E}\right) \in U n \check{F}_{n}$. By a), there is an $m \in \mathbb{N}$, $m>n$, with

$$
U_{0}:=\left(1_{E}, \tau_{m, n}^{F} U-1_{E}\right)=\tau_{m, n}^{\check{F}}\left(1_{E}, U-1_{E}\right) \in U n_{E_{m}} \check{F}_{m} .
$$

Thus there is a continuous map

$$
[0,1] \longrightarrow U n \check{F}_{m}, \quad s \longmapsto U_{s}
$$

with $U_{1} \in U n E_{m}\left(\subset U n \check{F}_{m}\right)$. We put

$$
U_{s}^{\prime}:=U_{s}\left(\sigma_{m}^{F} U_{s}\right)^{*}\left(\in U n \check{F}_{m}\right)
$$

for every $s \in[0,1]$. Then the map

$$
[0,1] \longrightarrow U n \check{F}_{m}, \quad s \longmapsto U_{s}^{\prime}
$$

is continuous and $U_{0}^{\prime}=U_{0}, U_{1}^{\prime}=1_{E}$. Let

$$
\varphi: \check{F} \longrightarrow E \times F, \quad(\alpha, x) \longmapsto(\alpha, x+\alpha)
$$

be the $E-C^{*}$-isomorphism of Proposition 4.1.2 d). Then

$$
U^{\prime \prime}:[0,1] \longrightarrow U n E_{n} \times U n F_{n}, \quad s \longmapsto \varphi_{m} U_{s}^{\prime}
$$

is continuous and

$$
U_{0}^{\prime \prime}=\varphi_{m} U_{0}^{\prime}=\left(1_{E}, \tau_{m, n}^{F} U\right), \quad U_{1}^{\prime \prime}=\varphi_{m} U_{1}^{\prime}=\left(1_{E}, 1_{E}\right)
$$

Thus $\tau_{m, n}^{F} U \sim_{h} 1_{E}$ in $U n F_{m}$.
$b \Rightarrow a$ Let $a \in K_{1}(F)$. There are $n \in \mathbb{N}$ and $U \in U n \check{F}_{n}$ with $a=[U]_{1}$. Since $U\left(\sigma_{n}^{F} U\right)^{*} \sim_{1} U$, we may assume $U=U\left(\sigma_{n}^{F} U\right)^{*}$, i.e. $\sigma_{n}^{F} U=1_{E}$. Thus there is a unique $X \in F_{n}$ with $\imath_{n}^{F} X=U-1_{E}$. Then

$$
U^{\prime}:=X+1_{E} \in U n F_{n} .
$$

By b), there is an $m \in \mathbb{N}, m>n$, with $\tau_{m, n}^{F} U^{\prime} \sim_{h} 1_{E}$. By Proposition 4.1.2 d),

$$
U=\left(1_{E}, X\right)=\left(1_{E}, U^{\prime}-1_{E}\right), \quad \tau_{m, n}^{\check{F}} U=\left(1_{E}, \tau_{m, n}^{F} U^{\prime}-1_{E}\right) \sim_{h}\left(1_{E}, 0\right)
$$

i.e. $a=[U]_{1}=0$.

COROLLARY 7.1.11 If F is a finite-dimensional full E - C^{*}-algebra then $K_{1}(F)=\{0\}$.

For every $n \in \mathbb{N}, F_{n}$ is finite-dimensional and so there is a finite family $\left(k_{i}\right)_{i \in I}$ in \mathbb{N} such that $F_{n} \approx \prod_{i \in I} \mathbf{C}_{k_{i}, k_{i}}$. Thus every $U \in U n F_{n}$ is homotopic to 1_{E} in $U n F_{n}$. By Proposition 7.1.10 $b \Rightarrow a, K_{1}(F)=\{0\}$.

COROLLARY 7.1.12 If the spectrum of E is totally disconnected (this happens e.g. if E is a W^{*}-algebra ([1] Corollary 4.4.1.10)) then $U n E_{n}=U n_{0} E_{n}$ for every $n \in \mathbb{N}$ and so $K_{1}(E)=\{0\}$.

Let Ω be the spectrum of E and let $U \in U n E_{n} . U$ has the form

$$
U=\sum_{t \in T_{n}}\left(U_{t} \otimes i d_{K}\right) V_{t}
$$

with $U_{t} \in E$ for every $t \in T_{n}$. We put

$$
U(\omega):=\sum_{t \in T_{n}}\left(U_{t}(\omega) \otimes i d_{K}\right) V_{t}
$$

for every $\omega \in \Omega$ and denote by $\sigma(U(\omega))$ its spectrum, which is finite. Let $\omega_{0} \in \Omega$ and let $\theta_{0} \in\left[0,2 \pi\left[\right.\right.$ such that $e^{i \theta_{0}} \notin \sigma\left(U\left(\omega_{0}\right)\right)$. By [1] Corollary 2.2.5.2, there is o clopen neighborhood Ω_{0} of ω_{0} such that $e^{i \theta_{0}}$ does not belong to the spectrum of $U(\omega)$ for all $\omega \in \Omega_{0}$. Assume for a moment $\Omega_{0}=\Omega$ and put for every $s \in[0,1]$,

$$
h_{s}: \mathbb{T} \backslash\{\alpha\} \longrightarrow \mathbb{T}, \quad e^{i \vartheta} \longmapsto e^{i \vartheta s}, \quad W_{s}:=h_{s}(U)
$$

where $\vartheta \in] \vartheta_{0}-2 \pi, \vartheta_{0}[$. Then

$$
[0,1] \longrightarrow U n E_{n}, \quad s \longmapsto W_{s}
$$

is a continuous path in $U n E_{n}$ ([1] Corollaries 4.1.2.13 and 4.1.3.5) with $W_{1}=U$ and $W_{0}=1_{E}$. Thus $U \in U n_{0} E_{n}$.

Since Ω is the union of a finite family of pairwise disjoint clopen sets of the above form $\Omega_{0}, U \in U n_{0} E_{n}$.

By Proposition 7.1.10 $b \Rightarrow a, K_{1}(E)=\{0\}$.

7.2 The Index Map

Throughout this section

$$
0 \longrightarrow F \stackrel{\varphi}{\longrightarrow} G \xrightarrow{\psi} H \longrightarrow 0
$$

denotes an exact sequence in \mathfrak{M}_{E} and $n \in \mathbb{N}$.

PROPOSITION 7.2.1 Let $U \in U n \check{H}_{n-1}$.
a) There are $V \in U n \check{G}_{n}$ and $P \in \operatorname{Pr} \check{F}_{n}$ such that

$$
\check{\psi}_{n} V=A_{n} U+B_{n} U^{*}, \quad \check{\varphi}_{n} P=V A_{n} V^{*}
$$

b) If $W \in U n \check{G}_{n}$ and $Q \in \operatorname{Pr} \check{F}_{n}$ such that

$$
\check{\psi}_{n} W=A_{n} U+B_{n} U^{*}, \quad \check{\varphi}_{n} Q=W A_{n} W^{*}
$$

then $\sigma_{n}^{F} Q=A_{n}$ and $P \sim_{0} Q$.
c) Let $U_{0} \in U n \check{H}_{n-1}, V_{0} \in U n \check{G}_{n}$, and $P_{0} \in \operatorname{Pr} \check{F}_{n}$ with

$$
U_{0} \sim_{1} U, \quad \check{\psi}_{n} V_{0}=A_{n} U_{0}+B_{n} U_{0}^{*}, \quad \check{\varphi}_{n} P_{0}=V_{0} A_{n} V_{0}^{*}
$$

Then $P_{0} \sim_{0} P$.
d) If $U \in U n_{E_{n-1}} \check{H}_{n-1}$ then $P \sim_{0} A_{n}$.
a) By Proposition 6.2.5 d), $A_{n} U+B_{n} U^{*} \in U n_{0} \check{H}_{n}$ so by [4] Lemma 2.1 .7 (i) (and [2] Theorem 2.1.9 a)), there is a $V \in U n_{0} \check{G}_{n}$ with $\check{\psi}_{n} V=A_{n} U+B_{n} U^{*}$. We have

$$
\begin{gathered}
\check{\psi}_{n}\left(V A_{n} V^{*}\right)=\left(A_{n} U+B_{n} U^{*}\right) A_{n}\left(A_{n} U^{*}+B_{n} U\right)=A_{n}, \\
\sigma_{n}^{H} \check{\psi}_{n}\left(V A_{n} V^{*}\right)=\sigma_{n}^{H} A_{n}=A_{n}=\check{\psi}_{n}\left(V A_{n} V^{*}\right),
\end{gathered}
$$

so by Proposition 6.2.8 $b_{2} \Rightarrow b_{1}$, there is a $P \in \operatorname{Pr} \check{F}_{n}$ with $\check{\varphi}_{n} P=V A_{n} V^{*}$.
b) Since $\pi^{F}=\pi^{H} \circ \check{\psi} \circ \check{\varphi}$, we have

$$
\pi_{n}^{F} Q=\pi_{n}^{H} \check{\psi}_{n} \check{\varphi}_{n} Q=\pi_{n}^{H} \check{\psi}_{n}\left(W A_{n} W^{*}\right)=
$$

$$
=\pi_{n}^{H}\left(\left(A_{n} U+B_{n} U^{*}\right) A_{n}\left(A_{n} U^{*}+B_{n} U\right)\right)=\pi_{n}^{H} A_{n}=A_{n},
$$

$\sigma_{n}^{F} Q=A_{n}$. Since

$$
\check{\psi}_{n}\left(W V^{*}\right)=\left(A_{n} U+B_{n} U^{*}\right)\left(A_{n} U^{*}+B_{n} U\right)=A_{n}+B_{n}=1_{E}=\sigma_{n}^{H} \check{\psi}_{n}\left(W V^{*}\right),
$$

by Proposition 6.2.8 $b_{2} \Rightarrow b_{1}$, there is a $Z \in U n \check{F}_{n}$ with $\check{\varphi}_{n} Z=W V^{*}$. Then

$$
\begin{gathered}
\check{\varphi}_{n}\left(Z P Z^{*}\right)=\left(W V^{*}\right)\left(V A_{n} V^{*}\right)\left(V W^{*}\right)=W A_{n} W^{*}=\check{\varphi}_{n} Q, \\
Z P Z^{*}=Q, \quad P \sim_{0} Q .
\end{gathered}
$$

c) By Proposition 7.1.4 c), $U^{*} U_{0}, U U_{0}^{*} \in U n_{E_{n-1}} \check{H}_{n-1}$ so by [4] Lemma 2.1.7 (iii), there are $X, Y \in U n \check{G}_{n-1}$ such that

$$
\check{\psi}_{n-1} X=U^{*} U_{0}, \quad \check{\psi}_{n-1} Y=U U_{0}^{*} .
$$

We put

$$
Z:=V\left(A_{n} X+B_{n} Y\right)
$$

By Proposition 6.2 .5 c), $Z \in U n \check{G}_{n}$. We have

$$
\begin{gathered}
\check{\psi}_{n} Z=\left(A_{n} U+B_{n} U^{*}\right)\left(A_{n} U^{*} U_{0}+B_{n} U U_{0}^{*}\right)=A_{n} U_{0}+B_{n} U_{0}^{*}, \\
\check{\psi}_{n}\left(Z A_{n} Z^{*}\right)=\left(A_{n} U_{0}+B_{n} U_{0}^{*}\right) A_{n}\left(A_{n} U_{0}^{*}+B_{n} U_{0}\right)=A_{n}=\sigma_{n}^{H} \check{\psi}_{n}\left(Z A_{n} Z^{*}\right) .
\end{gathered}
$$

By Proposition 6.2.8 $b_{2} \Rightarrow b_{1}$, there is a $Q \in \operatorname{Pr} \check{F}_{n}$ with $\check{\varphi}_{n} Q=Z A_{n} Z^{*}$. By b), $Q \sim_{0} P_{0}$. From

$$
\check{\varphi}_{n} Q=Z A_{n} Z^{*}=V\left(A_{n} X+B_{n} Y\right) A_{n}\left(A_{n} X^{*}+B_{n} Y^{*}\right) V^{*}=V A_{n} V^{*}=\check{\varphi}_{n} P
$$

it follows $P_{0} \sim_{0} Q=P$ (by [2] Theorem 2.1.9 a) $)$.
d) By c), we may take $U=1_{E}$. Further we may take $W=1_{E}$ and $Q=A_{n}$ in b), so $P \sim A_{n}$.

PROPOSITION 7.2.2 For every $i \in\{1,2\}$ let $U_{i} \in U n \check{H}_{n-1}, V_{i} \in U n \check{G}_{n}$, and $P_{i} \in \operatorname{Pr} \check{F}_{n}$ such that

$$
\check{\psi}_{n} V_{i}=A_{n} U_{i}+B_{n} U_{i}^{*}, \quad \check{\varphi}_{n} P_{i}=V_{i} A_{n} V_{i}^{*} .
$$

Put

$$
\begin{aligned}
X & :=A_{n+1} A_{n}+C_{n+1}^{*} C_{n}+C_{n+1} C_{n}^{*}+B_{n+1} B_{n}, \quad U:=A_{n} U_{1}+B_{n} U_{2}, \\
V & :=X\left(A_{n+1} V_{1}+B_{n+1} V_{2}\right) X, \quad P:=X\left(A_{n+1} P_{1}+B_{n+1} P_{2}\right) X,
\end{aligned}
$$

Chapter 7 The Functor K_{1}
a) $X \in U n_{0} E_{n+1}, U \in U n \check{H}_{n}, V \in U n \check{G}_{n+1}, P \in \operatorname{Pr} \check{F}_{n+1}$.
b) $\check{\psi}_{n+1} V=A_{n+1} U+B_{n+1} U^{*}, \check{\varphi}_{n+1} P=V A_{n+1} V^{*}$.
a) We have

$$
X^{2}=A_{n+1} A_{n}+A_{n+1} B_{n}+B_{n+1} A_{n}+B_{n+1} B_{n}=1_{E}
$$

Since X is selfadjoint it follows $X \in U n_{0} E_{n+1}$ ([4] Lemma 2.1.3 (ii)) and so $P \in \operatorname{Pr} \check{F}_{n+1}$. By Proposition 6.2 .5 c$), U \in U n \check{H}_{n}$ and $V \in U n \check{G}_{n+1}$.
b) We have

$$
\begin{gathered}
X A_{n+1} X=\left(A_{n+1} A_{n}+C_{n+1} C_{n}^{*}\right) X=A_{n+1} A_{n}+B_{n+1} A_{n}=A_{n} \\
X B_{n+1} X=\left(C_{n+1}^{*} C_{n}+B_{n+1} B_{n}\right) X=A_{n+1} B_{n}+B_{n+1} B_{n}=B_{n} \\
X A_{n} X=A_{n+1}, \quad X B_{n} X=B_{n+1}, \\
X A_{n+1} A_{n} X=A_{n+1} A_{n}, \quad X A_{n+1} B_{n} X=B_{n+1} A_{n}, \\
X B_{n+1} A_{n} X=A_{n+1} B_{n}, \quad X B_{n+1} B_{n} X=B_{n+1} B_{n}, \\
\check{\varphi}_{n+1} V=X\left(A_{n+1}\left(A_{n} U_{1}+B_{n} U_{1}^{*}\right)+B_{n+1}\left(A_{n} U_{2}+B_{n} U_{2}^{*}\right)\right) X= \\
=A_{n+1} A_{n} U_{1}+B_{n+1} A_{n} U_{1}^{*}+A_{n+1} B_{n} U_{2}+B_{n+1} B_{n} U_{2}^{*}=A_{n+1} U+B_{n+1} U^{*}, \\
V A_{n+1} V^{*}=X\left(A_{n+1} V_{1}+B_{n+1} V_{2}\right) X A_{n+1} X\left(\left(A_{n+1} V_{1}^{*}+B_{n+1} V_{2}^{*}\right) X=\right. \\
=X\left(A_{n+1} V_{1}+B_{n+1} V_{2}\right) A_{n}\left(A_{n+1} V_{1}^{*}+B_{n+1} V_{2}^{*}\right) X= \\
=X\left(A_{n+1} V_{1} A_{n} A_{n+1} V_{1}^{*}+B_{n+1} V_{2} A_{n} B_{n+1} V_{2}^{*}\right) X= \\
=X\left(A_{n+1} V_{1} A_{n} V_{1}^{*}+B_{n+1} V_{2} A_{n} V_{2}^{*}\right) X= \\
=X\left(A_{n+1} \check{\varphi}_{n} P_{1}+B_{n+1} \check{\varphi}_{n} P_{2}\right) X= \\
=\check{\varphi}_{n+1}\left(X\left(A_{n+1} P_{1}+B_{n+1} P_{2}\right) X\right)=\check{\varphi}_{n+1} P .
\end{gathered}
$$

COROLLARY 7.2.3 There is a unique group homomorphism, called the index map,

$$
\delta_{1}: K_{1}(H) \longrightarrow K_{0}(F)
$$

such that

$$
\boldsymbol{\delta}_{1}[U]_{1}=[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0}
$$

for every $U \in$ un \check{H}, where P satisfies the conditions of Proposition 7.2.1 a).

By Proposition 7.2.1 a),b), the map

$$
v_{n}: U n \check{H}_{n-1} \longrightarrow K_{0}(F), \quad U \longmapsto[P]_{0}-\left[\sigma_{n}^{F} P\right]_{0}
$$

is well-defined for every $n \in \mathbb{N}$, where P is associated to U as in Proposition 7.2.1 a). By Proposition 7.2.1 c), $v_{n} U=v_{n} U_{0}$ for all $U, U_{0} \in U n \check{H}_{n-1}$ with $U \sim_{1} U_{0}$. With the notation of Proposition 7.2.2,

$$
\begin{aligned}
& v_{n+1}\left(A_{n} U_{1}+B_{n} U_{2}\right)=v_{n+1} U=[P]_{0}-\left[\sigma_{n+1}^{F} P\right]_{0}= \\
= & {\left[A_{n+1} P_{1}+B_{n+1} P_{2}\right]_{0}-\left[\sigma_{n+1}^{F}\left(A_{n+1} P_{1}+B_{n+1} P_{2}\right)\right]_{0}=} \\
= & {\left[P_{1}\right]_{0}+\left[P_{2}\right]_{0}-\left[\sigma_{n}^{F} P_{1}\right]_{0}-\left[\sigma_{n}^{F} P_{2}\right]_{0}=v_{n} U_{1}+v_{n} U_{2} . }
\end{aligned}
$$

Thus by Proposition 7.2.1 d) (and Proposition 7.2.2), for $U \in U n \check{H}_{n-1}$,

$$
v_{n+1}\left(\bar{\tau}_{n}^{\check{M}_{n}} U\right)=v_{n+1}\left(A_{n} U+B_{n}\right)=v_{n} U+v_{n} 1_{E}=v_{n} U
$$

Hence the map

$$
v: u n \check{H} \longrightarrow K_{0}(F), \quad U \longmapsto v_{n} U
$$

is well-defined, where $U \in U n \breve{H}_{n-1}$ for some $n \in \mathbb{N}$. By Proposition 7.2.1 d), again, v induces a map $\delta_{1}: K_{1}(H) \longrightarrow K_{0}(F)$, which is additive by the above considerations. The uniqueness follows from the fact that the map $[\cdot]_{1}:$ un $\check{H} \longrightarrow K_{1}(H)$ is surjective.

PROPOSITION 7.2.4 Let

$$
0 \longrightarrow F^{\prime} \xrightarrow{\varphi^{\prime}} G^{\prime} \xrightarrow{\psi^{\prime}} H^{\prime} \longrightarrow 0
$$

be an exact sequence in \mathfrak{M}_{E} and δ_{1}^{\prime} its associated index map. If the diagram in \mathfrak{M}_{E}

is commutative then the diagram

is also commutative.

Chapter 7 The Functor K_{1}
Let $U \in U n \check{H}_{n-1}, V \in U n \check{G}_{n}$, and $P \in \operatorname{Pr} \check{F}_{n}$ with

$$
\check{\psi}_{n} V=A_{n} U+B_{n} U^{*}, \quad \check{\varphi}_{n} P=V A_{n} V^{*} .
$$

Put

$$
V^{\prime}:=\check{\alpha}_{n} V \in U n \check{G}_{n}^{\prime}, \quad \quad P^{\prime}:=\check{\gamma}_{n} P \in \operatorname{Pr} \check{F}_{n}^{\prime}
$$

Then

$$
\begin{aligned}
& \check{\psi}_{n}^{\prime} V^{\prime}=\check{\psi}_{n}^{\prime} \check{\alpha}_{n} V=\check{\beta}_{n} \check{\psi}_{n} V=A_{n} \check{\beta}_{n-1} U+B_{n} \check{\beta}_{n-1} U^{*}, \\
& \check{\varphi}_{n}^{\prime} P^{\prime}=\check{\varphi}_{n}^{\prime} \check{\gamma}_{n} P=\check{\alpha}_{n} \check{\varphi}_{n} P=\check{\alpha}_{n}\left(V A_{n} V^{*}\right)=V^{\prime} A_{n} V^{*}
\end{aligned}
$$

By Corollary 7.2.3 for δ_{1}^{\prime}, Proposition 7.1.6 c), and Proposition 6.2.2 c),

$$
\begin{gathered}
\delta_{1}^{\prime} K_{1}(\beta)[U]_{1}=\delta_{1}^{\prime}\left[\check{\boldsymbol{\beta}}_{n-1} U\right]_{1}=\left[P^{\prime}\right]_{0}-\left[\sigma_{n}^{F^{\prime}} P^{\prime}\right]_{0}=\left[\check{\gamma}_{n} P\right]_{0}-\left[\sigma_{n}^{F^{\prime}} \check{\gamma}_{n} P\right]_{0}= \\
=\left[\check{\gamma}_{n} P\right]_{0}-\left[\check{\gamma}_{n} \sigma_{n}^{F} P\right]_{0}=K_{0}(\gamma)\left([P]_{0}-\left[\sigma_{n}^{F} P\right]_{0}\right)=K_{0}(\gamma) \delta_{1}[U]_{1} .
\end{gathered}
$$

PROPOSITION 7.2.5

a) $\delta_{1} \circ K_{1}(\psi)=0$.
b) $K_{0}(\varphi) \circ \delta_{1}=0$.
a) Let $U \in U n \check{G}_{n-1}$ and put

$$
V:=\bar{\tau}_{n}^{\bar{G}_{n}} U=A_{n} U+B_{n} \in U n \check{G}_{n} .
$$

Then

$$
\begin{gathered}
\check{\psi}_{n} V=A_{n}\left(\check{\psi}_{n-1} U\right)+B_{n} \\
\left(\check{\psi}_{n} V\right) A_{n}\left(\check{\psi}_{n} V\right)^{*}=\left(A_{n}\left(\check{\psi}_{n-1} U\right)+B_{n}\right) A_{n}\left(A_{n}\left(\check{\psi}_{n-1} U\right)^{*}+B_{n}\right)=A_{n},
\end{gathered}
$$

so (by Proposition 7.1.6 c))

$$
\delta_{1} K_{1}(\psi)[U]_{1}=\delta_{1}\left[\check{\psi}_{n-1} U\right]_{1}=\left[A_{n}\right]_{0}-\left[\sigma_{n}^{F} A_{n}\right]_{0}=0
$$

b) Let $U \in U n \check{H}_{n-1}, V \in U n \check{G}_{n}$, and $P \in \operatorname{Pr} \check{F}_{n}$ with

$$
\check{\psi}_{n} V=A_{n} U+B_{n} U^{*}, \quad \check{\varphi}_{n} P=V A_{n} V^{*}
$$

By Proposition 6.2.2 c) (since $\left.\check{\varphi} \circ \sigma^{F}=\sigma^{G} \circ \check{\varphi}\right)$,

$$
\begin{gathered}
K_{0}(\varphi) \delta_{1}[U]_{1}=K_{0}(\varphi)\left([P]_{0}-\left[\sigma_{n}^{F} P\right]_{0}\right)= \\
=\left[\check{\varphi}_{n} P\right]_{0}-\left[\check{\varphi}_{n} \sigma_{n}^{F} P\right]_{0}=\left[\check{\varphi}_{n} P\right]_{0}-\left[\sigma_{n}^{G} \check{\varphi}_{n} P\right]_{0}= \\
=\left[V A_{n} V^{*}\right]_{0}-\left[\left(\sigma_{n}^{G} V\right) A_{n}\left(\sigma_{n}^{G} V\right)^{*}\right]_{0}=\left[A_{n}\right]_{0}-\left[A_{n}\right]_{0}=0 .
\end{gathered}
$$

PROPOSITION 7.2.6 Let $U \in U n \check{H}_{n-1}$. There are $V \in \check{G}_{n}$ and $P, Q \in \operatorname{Pr} \check{F}_{n}$ such that

$$
\begin{gathered}
V^{*} V \in \operatorname{Pr} \check{G}_{n}, \quad \check{\psi}_{n} V=A_{n} U, \\
\check{\varphi}_{n} P=1_{E}-V^{*} V, \quad \check{\varphi}_{n} Q=1_{E}-V V^{*}, \quad \delta_{1}[U]_{1}=[P]_{0}-[Q]_{0} .
\end{gathered}
$$

By Proposition 6.2.5 d), $A_{n} U+B_{n} U^{*} \in U n_{0} \check{H}_{n}$. Since $\check{\psi}_{n}$ is surjective, by [4] Lemma 2.1.7 (i), there is a $V_{0} \in U n \check{G}_{n}$ with $\check{\psi}_{n} V_{0}=A_{n} U+B_{n} U^{*}$. Put $V:=V_{0} A_{n} \in \check{G}_{n}$. Then

$$
V^{*} V=A_{n} V_{0}^{*} V_{0} A_{n}=A_{n} \in \operatorname{Pr} \check{G}_{n}
$$

and

$$
\check{\psi}_{n} V=\left(\check{\psi}_{n} V_{0}\right) A_{n}=\left(A_{n} U+B_{n} U^{*}\right) A_{n}=A_{n} U .
$$

We have

$$
\check{\psi}_{n}\left(1_{E}-V^{*} V\right)=1_{E}-A_{n}=B_{n}=\check{\psi}_{n}\left(1_{E}-V V^{*}\right) .
$$

By Proposition 6.2.8 $b_{2} \Rightarrow b_{1}$, there are $P, Q \in \operatorname{Pr} \check{F}_{n}$ with

$$
\check{\varphi}_{n} P=1_{E}-V^{*} V, \quad \check{\varphi}_{n} Q=1_{E}-V V^{*} .
$$

Put

$$
\begin{gathered}
W:=A_{n+1} V+C_{n+1}\left(1_{E}-V^{*} V\right)+C_{n+1}^{*}\left(1_{E}-V V^{*}\right)+B_{n+1} V^{*} \in \check{G}_{n+1} \\
Z:=A_{n}+\left(C_{n+1}+C_{n+1}^{*}\right) B_{n} \in E_{n+1}
\end{gathered}
$$

Since $V V^{*} V=V, V^{*} V V^{*}=V^{*}$, and

$$
W^{*}=A_{n+1} V^{*}+C_{n+1}^{*}\left(1_{E}-V^{*} V\right)+C_{n+1}\left(1_{E}-V V^{*}\right)+B_{n+1} V,
$$

we get

$$
W W^{*}=A_{n+1} V V^{*}+B_{n+1}\left(1_{E}-V^{*} V\right)+A_{n+1}\left(1_{E}-V V^{*}\right)+B_{n+1} V^{*} V=
$$

Chapter 7 The Functor K_{1}

$$
=A_{n+1}+B_{n+1}=1_{E}
$$

$$
\begin{gathered}
W^{*} W=A_{n+1} V^{*} V+A_{n+1}\left(1_{E}-V^{*} V\right)+B_{n+1}\left(1_{E}-V V^{*}\right)+B_{n+1} V V^{*}= \\
=A_{n+1}+B_{n+1}=1_{E} .
\end{gathered}
$$

By Proposition 6.2.5 a),

$$
Z^{2}=A_{n}+B_{n}=1_{E}
$$

so $W \in U n \check{G}_{n+1}, Z \in U n E_{n+1}$, and $Z W \in U n \check{G}_{n+1}$. By the above and Proposition 6.2.5 a),

$$
\begin{gathered}
\check{\psi}_{n+1} W=A_{n+1} A_{n} U+\left(C_{n+1}+C_{n+1}^{*}\right) B_{n}+B_{n+1} A_{n} U^{*} \\
\check{\psi}_{n+1}(Z W)=Z \check{\psi}_{n+1} W= \\
=\left(A_{n}+\left(C_{n+1}+C_{n+1}^{*}\right) B_{n}\right)\left(A_{n+1} A_{n} U+\left(C_{n+1}+C_{n+1}^{*}\right) B_{n}+B_{n+1} A_{n} U^{*}\right)= \\
=A_{n+1} A_{n} U+B_{n+1} A_{n} U^{*}+B_{n}=A_{n+1} A_{n} U+B_{n+1} A_{n} U^{*}+\left(A_{n+1}+B_{n+1}\right) B_{n}= \\
=A_{n+1}\left(A_{n} U+B_{n}\right)+B_{n+1}\left(A_{n} U^{*}+B_{n}\right) .
\end{gathered}
$$

We put

$$
R:=A_{n+1}\left(1_{E}-Q\right)+B_{n+1} P \in \operatorname{Pr} \check{F}_{n+1} .
$$

Using again $V V^{*} V=V$ and $V^{*} V V^{*}=V^{*}$,

$$
\begin{gathered}
\check{\varphi}_{n+1} R=A_{n+1} V V^{*}+B_{n+1}\left(1_{E}-V^{*} V\right), \\
W A_{n+1}=A_{n+1} V+C_{n+1}\left(1_{E}-V^{*} V\right), \\
W A_{n+1} W^{*}=A_{n+1} V V^{*}+B_{n+1}\left(1_{E}-V^{*} V\right)=\check{\varphi}_{n+1} R, \\
Z W A_{n+1} W^{*} Z=Z\left(\check{\varphi}_{n+1} R\right) Z=\check{\varphi}_{n+1}(Z R Z) .
\end{gathered}
$$

Since $Z R Z \sim_{0} R$ and $U \sim_{1} A_{n} U+B_{n}$, by the definition of δ_{1},

$$
\delta_{1}[U]_{1}=\delta_{1}\left[A_{n} U+B_{n}\right]_{1}=[R]_{0}-\left[\sigma_{n+1}^{F} R\right]_{0}
$$

Since $\pi^{H} \circ \check{\psi} \circ \check{\varphi}=\pi^{F}$, by the above,

$$
\pi_{n}^{F} P=\pi_{n}^{H} \check{\psi}_{n} \check{\varphi}_{n} P=\pi_{n}^{H} \check{\psi}_{n}\left(1_{E}-V^{*} V\right)=\pi_{n}^{H} B_{n}=B_{n}=\pi_{n}^{F} Q .
$$

Thus by Proposition 6.1.3 (and Proposition 7.2.1 b)),

$$
\sigma_{n+1}^{F} R=A_{n+1}\left(1_{E}-B_{n}\right)+B_{n+1} B_{n} \sim_{0} A_{n+1} B_{n}+A_{n+1} A_{n}=
$$

$$
=A_{n+1}=\bar{\rho}_{n+1}^{\check{F}} 1_{E} \sim_{0} 1_{E}
$$

and we get

$$
\begin{aligned}
{[R]_{0} } & =\left[1_{E}-Q\right]_{0}+[P]_{0}=\left[1_{E}\right]_{0}+[P]_{0}-[Q]_{0} \\
\delta_{1}[U]_{1} & =\left[1_{E}\right]_{0}+[P]_{0}-[Q]_{0}-\left[1_{E}\right]_{0}=[P]_{0}-[Q]_{0}
\end{aligned}
$$

PROPOSITION 7.2.7 $\operatorname{Ker} \delta_{1} \subset \operatorname{Im} K_{1}(\psi)$.

Let $a \in \operatorname{Ker} \delta_{1}$ and let $U \in U n \check{H}_{n-1}$ with $a=[U]_{1}$. By Proposition 7.2.6, there are $V \in \check{G}_{n}$ and $P, Q \in \operatorname{Pr} \check{F}_{n}$ such that $V^{*} V \in \operatorname{Pr} \check{G}_{n}, \check{\Psi}_{n} V=A_{n} U$,

$$
\check{\varphi}_{n} P=1_{E}-V^{*} V, \quad \check{\varphi}_{n} Q=1_{E}-V V^{*}, \quad \delta_{1}[U]_{1}=[P]_{0}-[Q]_{0} .
$$

Then $[P]_{0}=[Q]_{0}$. By Corollary $6.1 .6 \mathrm{a} \Rightarrow \mathrm{c}$, there is an $m \in \mathbb{N}, m>n+1$, and an $X \in \check{F}_{m}$ such that

$$
\begin{aligned}
& X^{*} X=\left(\prod_{i=n+1}^{m} A_{i}\right) P+\left(1_{E}-\prod_{i=n+1}^{m} A_{i}\right), \\
& X X^{*}=\left(\prod_{i=n+1}^{m} A_{i}\right) Q+\left(1_{E}-\prod_{i=n+1}^{m} A_{i}\right) .
\end{aligned}
$$

Put $W:=\check{\varphi}_{m} X$. Then

$$
\begin{gathered}
W^{*} W=\check{\varphi}_{m}\left(X^{*} X\right)=\left(\prod_{i=n+1}^{m} A_{i}\right)\left(1_{E}-V^{*} V\right)+\left(1_{E}-\prod_{i=n+1}^{m} A_{i}\right)= \\
=1_{E}-\left(\prod_{i=n+1}^{m} A_{i}\right) V^{*} V \\
W W^{*}=1_{E}-\left(\prod_{i=n+1}^{m} A_{i}\right) V V^{*} \\
\left(\prod_{i=n+1}^{m} A_{i}\right) V V^{*} W W^{*}=\left(\prod_{i=n+1}^{m} A_{i}\right) V^{*} V W^{*} W=0 \\
\left(\prod_{i=n+1}^{m} A_{i}\right) V^{*} W=\left(\prod_{i=n+1}^{m} A_{i}\right) V W^{*}=0 \\
\left(\left(\prod_{i=n+1}^{m} A_{i}\right) V+W\right)^{*}\left(\left(\prod_{i=n+1}^{m} A_{i}\right) V+W\right)=
\end{gathered}
$$

Chapter 7 The Functor K_{1}

$$
\begin{gathered}
=\left(\prod_{i=n+1}^{m} A_{i}\right) V^{*} V+W^{*} W=1_{E} \\
\left(\left(\prod_{i=n+1}^{m} A_{i}\right) V+W\right)\left(\left(\prod_{i=n+1}^{m} A_{i}\right) V+W\right)^{*}= \\
=\left(\prod_{i=n+1}^{m} A_{i}\right) V V^{*}+W W^{*}=1_{E} \\
\left(\prod_{i=n+1}^{m} A_{i}\right) V+W \in U n \check{G}_{m}
\end{gathered}
$$

From

$$
\begin{gathered}
\check{\psi}_{m}\left(W^{*} W\right)=1_{E}-\left(\prod_{i=n+1}^{m} A_{i}\right) \check{\Psi}_{m}\left(V^{*} V\right)= \\
=1_{E}-\left(\prod_{i=n+1}^{m} A_{i}\right) A_{n}=\check{\psi}_{m}\left(W W^{*}\right)
\end{gathered}
$$

since $\check{\psi}_{m} W=\check{\psi}_{m} \check{\varphi}_{m} X \in E_{m}$, it follows

$$
\check{\Psi}_{m} W+\left(\prod_{i=n}^{m} A_{i}\right) \in U n E_{m}
$$

By the above,

$$
\begin{gathered}
\left(\prod_{i=n}^{m} A_{i}\right) U \check{\psi}_{m} W^{*}=\left(\prod_{i=n+1}^{m} A_{i}\right)\left(\check{\psi}_{m} V\right)\left(\check{\psi}_{m} W^{*}\right)= \\
=\check{\psi}_{m}\left(\left(\prod_{i=n+1}^{m} A_{i}\right) V W^{*}\right)=0, \\
\left(\check{\psi}_{m} W\right)^{*}\left(\check{\psi}_{m} W\right)\left(\prod_{i=n}^{m} A_{i}\right)=0, \quad\left(\check{\Psi}_{m} W\right)\left(\prod_{i=n}^{m} A_{i}\right)=0, \\
\check{\psi}_{m}\left(\left(\prod_{i=n+1}^{m} A_{i}\right) V+W\right)=\left(\prod_{i=n}^{m} A_{i}\right) U+\check{\psi}_{m} W \sim_{1} \\
\sim_{1}\left(\left(\prod_{i=n}^{m} A_{i}\right) U+\check{\psi}_{m} W\right)\left(\left(\prod_{i=n}^{m} A_{i}\right)+\check{\psi}_{m} W^{*}\right)= \\
=\left(\left(\prod_{i=n}^{m} A_{i}\right) U+\left(1_{E}-\prod_{i=n}^{m} A_{i}\right)\right) .
\end{gathered}
$$

By Proposition 7.1.3 and Proposition 7.1.6 c),

$$
\begin{gathered}
a=[U]_{1}=\left[\left(\prod_{i=n}^{m} A_{i}\right) U+\left(1_{E}-\prod_{i=n}^{m} A_{i}\right)\right]_{1}= \\
=\left[\check{\psi}_{m}\left(\left(\prod_{i=n+1}^{m} A_{i}\right) V+W\right)\right]_{1}= \\
=K_{1}(\psi)\left[\left(\prod_{i=n+1}^{m} A_{i}\right) V+W\right]_{1} \in \operatorname{Im} K_{1}(\psi)
\end{gathered}
$$

PROPOSITION 7.2.8 $\operatorname{Ker} K_{0}(\varphi) \subset \operatorname{Im} \delta_{1}$.

Let $a \in \operatorname{Ker} K_{0}(\varphi)$. By Proposition 6.2.4, there is a $P \in \operatorname{Pr} \check{F}_{\rightarrow}$ with

$$
a=[P]_{0}-\left[\sigma_{\rightarrow}^{F} P\right]_{0}
$$

By Proposition 6.2.2 c),

$$
0=K_{0}(\varphi) a=\left[\check{\varphi}_{\rightarrow} P\right]_{0}-\left[\check{\varphi}_{\rightarrow} \sigma_{\rightarrow}^{F} P\right]_{0} .
$$

Let $n \in \mathbb{N}$ such that $P \in \operatorname{Pr} \check{F}_{\rightarrow n}$. Then $\left[\check{\varphi}_{\rightarrow n} P\right]_{0}=\left[\check{\varphi}_{\rightarrow n} \sigma_{\rightarrow n}^{F} P\right]_{0}$. By Corollary 6.1.6 $\mathrm{a} \Rightarrow \mathrm{c}$, there is an $m \in \mathbb{N}, m>n+1$, such that

$$
\check{\varphi}_{\rightarrow n} P+\left(B_{m}\right)_{\rightarrow} \sim_{0} \check{\varphi}_{\rightarrow n} \sigma_{\rightarrow n}^{F} P+\left(B_{m}\right)_{\rightarrow} .
$$

Put

$$
Q:=P+\left(B_{m}\right)_{\rightarrow} \in \operatorname{Pr} \check{F}_{\rightarrow m}
$$

Then

$$
a=[Q]_{0}-\left[\sigma_{\rightarrow}^{F} Q\right]_{0}, \quad \quad \check{\varphi}_{\rightarrow m} Q \sim_{0} \check{\varphi}_{\rightarrow m} \sigma_{\rightarrow m}^{F} Q=\sigma_{\rightarrow m}^{F} Q .
$$

By Proposition 6.2.6, there are $k \in \mathbb{N}, k \geq m+2$, and $W \in U n \check{G}_{\rightarrow k}$ with

$$
W\left(\check{\varphi}_{\rightarrow m} Q\right) W^{*}=\sigma_{\rightarrow m}^{F} Q
$$

It follows

$$
\begin{gathered}
\left(\sigma_{\rightarrow m}^{F} Q\right) W=W\left(\check{\varphi}_{\rightarrow m} Q\right) W^{*} W=W\left(\check{\varphi}_{\rightarrow m} Q\right), \\
\left(\check{\psi}_{\rightarrow k} W\right)\left(\sigma_{\rightarrow k}^{F} Q\right)=\left(\check{\psi}_{\rightarrow k} W\right)\left(\check{\psi}_{\rightarrow k} \check{\varphi}_{\rightarrow k} Q\right)=\check{\psi}_{\rightarrow k}\left(W \check{\varphi}_{\rightarrow k} Q\right)=
\end{gathered}
$$

Chapter 7 The Functor K_{1}

$$
=\check{\psi}_{\rightarrow k}\left(\left(\sigma_{\rightarrow k}^{F} Q\right) W\right)=\left(\sigma_{\rightarrow k}^{F} Q\right)\left(\check{\psi}_{\rightarrow k} W\right)
$$

Put

$$
U:=\left(\check{\psi}_{\rightarrow k} W\right)\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)+\sigma_{\rightarrow k}^{F} Q \in \check{H}_{\rightarrow k}
$$

Then

$$
U U^{*}=U^{*} U=1_{E}, \quad U \in U n \check{H}_{\rightarrow k}
$$

Put

$$
V_{1}:=\left(A_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right) W+\left(B_{k+1}\right)_{\rightarrow} \sigma_{\rightarrow k}^{F} Q \in \check{G}_{k+1}
$$

Then

$$
\begin{gathered}
V_{1}^{*}=\left(A_{k+1}\right)_{\rightarrow} W^{*}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)+\left(B_{k+1}\right)_{\rightarrow} \sigma_{\rightarrow k}^{F} Q \\
V_{1} V_{1}^{*}=\left(A_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)+\left(B_{k+1}\right)_{\rightarrow} \sigma_{\rightarrow k}^{F} Q \in \operatorname{Pr} E_{k+1}, \\
V_{1}^{*} V_{1}=\left(A_{k+1}\right)_{\rightarrow} W^{*}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right) W+\left(B_{k+1}\right)_{\rightarrow} \sigma_{\rightarrow k}^{F} Q= \\
=\left(A_{k+1}\right)_{\rightarrow}\left(1_{E}-W^{*}\left(\sigma_{\rightarrow k}^{F} Q\right) W\right)+\left(B_{k+1}\right)_{\rightarrow \rightarrow} \sigma_{\rightarrow k}^{F} Q .
\end{gathered}
$$

Put

$$
Z:=\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)+\left(\left(C_{k+1}\right)_{\rightarrow}+\left(C_{k+1}^{*}\right)_{\rightarrow}\right) \sigma_{\rightarrow k}^{F} Q \in E_{k+1}
$$

By Proposition 6.2.5 a),

$$
\begin{gathered}
Z^{2}=\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)+\sigma_{\rightarrow k}^{F} Q=1_{E}, \quad Z \in U n E_{k+1}, \\
Z V_{1}=\left(A_{k+1}\right)_{\rightarrow(}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right) W+\left(C_{k+1}^{*}\right)_{\rightarrow} \sigma_{\rightarrow k}^{F} Q, \\
V:=Z V_{1} Z=\left(A_{k+1}\right)_{\rightarrow(}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right) W\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)+ \\
+\left(C_{k+1}^{*}\right)_{\rightarrow(}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right) W \sigma_{\rightarrow k}^{F} Q+\left(A_{k+1}\right)_{\rightarrow} \sigma_{\rightarrow k}^{F} Q \in \check{G}_{\rightarrow k+1}, \\
\check{\psi}_{\rightarrow} V=\left(A_{k+1}\right)_{\rightarrow \rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right) \check{\psi}_{\rightarrow k} W+\left(A_{k+1}\right)_{\rightarrow \rightarrow} \sigma_{\rightarrow k}^{F} Q=\left(A_{k+1}\right)_{\rightarrow} U, \\
V V^{*}=Z V_{1} V_{1}^{*} Z \in P r E_{k+1}, \quad V^{*} V=Z V_{1}^{*} V_{1} Z, \\
1_{E}-V V^{*}=Z\left(1_{E}-V_{1} V_{1}^{*}\right) Z= \\
=Z\left(\left(A_{k+1}\right)_{\rightarrow \rightarrow} \sigma_{\rightarrow k}^{F} Q+\left(B_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)\right) Z, \\
1_{E}-V^{*} V=Z\left(1_{E}-V_{1}^{*} V_{1}\right) Z= \\
=Z\left(\left(A_{k+1}\right)_{\rightarrow \rightarrow} W^{*}\left(\sigma_{\rightarrow k}^{F} Q\right) W+\left(B_{k+1}\right)_{\rightarrow \rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)\right) Z= \\
=Z\left(\left(A_{k+1}\right)_{\rightarrow} \check{\varphi}_{\rightarrow k} Q+\left(B_{k+1}\right)_{\rightarrow(}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)\right) Z,
\end{gathered}
$$

$$
\begin{gathered}
\check{\varphi}_{\rightarrow, k+1}\left(Z\left(\left(A_{k+1}\right)_{\rightarrow} Q+\left(B_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)\right) Z\right)= \\
=Z\left(\left(A_{k+1}\right)_{\rightarrow} \check{\varphi}_{k} Q+\left(B_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)\right) Z=1_{E}-V^{*} V, \\
\left.\check{\varphi}_{\rightarrow, k+1}\left(Z\left(\left(A_{k+1}\right)_{\rightarrow \rightarrow} \sigma_{\rightarrow k}^{F} Q+\left(B_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)\right) Z\right)\right)=1_{E}-V V^{*} .
\end{gathered}
$$

By Proposition 7.2.6,

$$
\begin{gathered}
\delta_{1}[U]_{1}=\left[Z\left(\left(A_{k+1}\right)_{\rightarrow} Q+\left(B_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F} Q\right)\right) Z\right]_{0}- \\
-\left[Z\left(\left(A_{k+1}\right)_{\rightarrow} \sigma_{\rightarrow k}^{F} Q+\left(B_{k+1}\right)_{\rightarrow}\left(1_{E}-\sigma_{\rightarrow k}^{F}\right) Q\right) Z\right]_{0}=[Q]_{0}-\left[\sigma_{\rightarrow}^{F} Q\right]_{0}=a .
\end{gathered}
$$

Thus $a \in \operatorname{Im} \delta_{1}$.

THEOREM 7.2.9 The sequence

$$
K_{1}(F) \xrightarrow{K_{1}(\varphi)} K_{1}(G) \xrightarrow{K_{1}(\psi)} K_{1}(H) \xrightarrow{\delta_{1}} K_{0}(F) \xrightarrow{K_{0}(\varphi)} K_{0}(G) \xrightarrow{K_{0}(\psi)} K_{0}(H)
$$

is exact.

The exactness was proved: for $K_{1}(G)$ in Proposition 7.1.9, for $K_{1}(H)$ in Proposition 7.2.7 and Proposition 7.2.5 a), for $K_{0}(F)$ in Proposition 7.2.8 and Proposition 7.2.5 b), and for $K_{0}(G)$ in Proposition 6.2 .8 c$)$.

$7.3 \quad K_{1}(F) \approx K_{0}(S F)$

DEFINITION 7.3.1 Let F be an $E-C^{*}$-algebra. We denote by $C F$ the $E-C^{*}$-algebra of continuous maps $x:[0,1] \longrightarrow F$ with $x(0)=0$ and by $S F$ its $E-C^{*}$-subalgebra $\{x \in C F \mid x(1)=0\}$ (Definition 2.1.1 or [2] Corollary 1.2.5 a),d)). Moreover we denote by $\theta_{F}: K_{1}(F) \longrightarrow K_{0}(S F)$ the index map associated to the exact sequence

$$
0 \longrightarrow S F \xrightarrow{i_{F}} C F \xrightarrow{j_{F}} F \longrightarrow 0,
$$

in \mathfrak{M}_{E}, where i_{F} is the inclusion map and

$$
j_{F}: C F \longrightarrow F, \quad x \longmapsto x(1) .
$$

If $F \stackrel{\varphi}{\longrightarrow} G$ is a morphism in \mathfrak{M}_{E} then we put

$$
\begin{aligned}
S \varphi: S F \longrightarrow S G, & x \longmapsto \varphi \circ x \\
C \varphi: C F \longrightarrow C G, & x \longmapsto \varphi \circ x .
\end{aligned}
$$

Chapter 7 The Functor K_{1}
If $F \xrightarrow{\varphi} G \xrightarrow{\psi} H$ are morphisms in \mathfrak{M}_{E} then $S(\psi) \circ S(\varphi)=S(\psi \circ \varphi)$.

THEOREM 7.3.2 θ_{F} is a group isomorphism for every $E-C^{*}$-algebra F.
$C F$ is null-homotopic ([4] Example 4.1.5 or Proposition 2.4.1), so by the Homotopy invariance (Theorem 6.2.11 e), Proposition 7.1.8 e)), it is K-null. By Theorem 7.2.9, the sequence

$$
K_{1}(C F) \xrightarrow{K_{1}\left(j_{F}\right)} K_{1}(F) \xrightarrow{\theta_{F}} K_{0}(S F) \xrightarrow{K_{0}\left(i_{F}\right)} K_{0}(C F)
$$

is exact, so θ_{F} is a group isomorphism.

PROPOSITION 7.3.3 Let F and G be $E-C^{*}$-algebras.
a) For all $(x, y) \in(S F) \times(S G)$ put

$$
\overbrace{(x, y)}:[0,1] \longrightarrow F \times G, \quad s \longmapsto(x(s), y(s)) .
$$

Then the map

$$
(S F) \times(S G) \longrightarrow S(F \times G), \quad(x, y) \longmapsto \overbrace{(x, y)}
$$

is an isomorphism in \mathfrak{M}_{E} (Definition 1.1.2).
b) $K_{1}(F) \times K_{1}(G) \approx K_{1}(F \times G)$ (Product Theorem).
a) is easy to see.
b) By Theorem 7.3.2, the maps

$$
K_{1}(F) \times K_{1}(G) \xrightarrow{\theta_{F} \times \theta_{G}} K_{0}(S F) \times K_{0}(S G), \quad K_{1}(F \times G) \xrightarrow{\theta_{F \times G}} K_{0}(S(F \times G))
$$

are group isomorphisms. By a), $K_{0}((S F) \times(S G)) \approx K_{0}(S(F \times G))$ and by Corollary $6.2 .10 \mathrm{~b}), K_{0}((S F) \times(S G)) \approx K_{0}(S F) \times K_{0}(S G)$. Thus

$$
K_{1}(F) \times K_{1}(G) \approx K_{1}(F \times G) .
$$

COROLLARY 7.3.4 Let $F \xrightarrow{\varphi} F^{\prime}, G \xrightarrow{\psi} G^{\prime}$ be morphisms in \mathfrak{M}_{E} and

$$
\varphi \times \psi: F \times G \longrightarrow F^{\prime} \times G^{\prime}, \quad(x, y) \longmapsto(\varphi x, \psi y) .
$$

Then $\varphi \times \psi$ is a morphism in \mathfrak{M}_{E} and

$$
K_{i}(\varphi \times \psi)=K_{i}(\varphi) \times K_{i}(\psi)
$$

for all $i \in\{0,1\}$.

The assertion follows easily from Corollary 6.2 .10 b) and Proposition 7.3 .3 b).

PROPOSITION 7.3.5 (Product Theorem) Let $\left(F_{j}\right)_{j \in J}$ be a finite family of $E-C^{*}$-algebras, $F:=\prod_{j \in J} F_{j}$ (Definition 1.1.2), and for every $j \in J$ let $\varphi_{j}: F_{j} \longrightarrow F$ be the canonical inclusion and $\psi_{j}: F \longrightarrow F_{j}$ the projection. Then for every $i \in\{0,1\}$,

$$
\Phi: \prod_{j \in J} K_{i}\left(F_{j}\right) \longrightarrow K_{i}(F), \quad\left(a_{j}\right)_{j \in J} \longmapsto \sum_{j \in J} K_{i}\left(\varphi_{j}\right) a_{j}
$$

is a group isomorphism and

$$
\Psi: K_{i}(F) \longrightarrow \prod_{j \in J} K_{i}\left(F_{j}\right), \quad a \longmapsto\left(K_{i}\left(\psi_{j}\right) a\right)_{j \in J}
$$

is its inverse.
Φ and Ψ are obviously group homomorphisms. For $j, k \in J, \psi_{j} \circ \varphi_{k}=0$ if $j \neq k$ and $\psi_{j} \circ \varphi_{j}=i d_{F_{j}}$. Thus for $\left(a_{j}\right)_{j \in J} \in \prod_{j \in J} K_{i}\left(F_{j}\right)$ and $k \in J$,

$$
\left(\Psi \Phi\left(a_{j}\right)_{j \in J}\right)_{k}=K_{i}\left(\psi_{k}\right) \sum_{j \in J} K_{i}\left(\varphi_{j}\right) a_{j}=a_{k}
$$

i.e. $\Psi \circ \Phi$ is the identity map of $\prod_{j \in J} K_{i}\left(F_{j}\right)$. Since $\sum_{j \in J} \varphi_{j} \circ \psi_{j}=i d_{F}$, for $a \in K_{i}(F)$,

$$
\Phi \Psi a=\Phi\left(K_{i}\left(\psi_{j}\right) a\right)_{j \in J}=\sum_{j \in J} K_{i}\left(\varphi_{j}\right) K_{i}\left(\psi_{j}\right) a=K_{i}\left(\sum_{j \in J} \varphi_{j} \circ \psi_{j}\right) a=a
$$

i.e. $\Phi \circ \Psi=i d_{K_{i}(F)}$.

Chapter 7 The Functor K_{1}

THEOREM 7.3.6 (Continuity of $\left.K_{1}\right)$ Let $\left\{\left(F_{i}\right)_{i \in I},\left(\varphi_{i j}\right)_{i, j \in I}\right\}$ be an inductive system in \mathfrak{M}_{E} and let $\left\{F,\left(\varphi_{i}\right)_{i \in I}\right\}$ be its limit in \mathfrak{M}_{E}. By Proposition 7.1.8 a),

$$
\left\{\left(K_{1}\left(F_{i}\right)\right)_{i \in I},\left(K_{1}\left(\varphi_{i j}\right)\right)_{i, j \in I}\right\}
$$

is an inductive system in the category of additive groups. Let $\left\{\mathscr{G},\left(\psi_{i}\right)_{i \in I}\right\}$ be its limit in this category and let $\psi: \mathscr{G} \longrightarrow K_{1}(F)$ be the group homomorphism such that $\psi \circ \psi_{i}=$ $K_{1}\left(\varphi_{i}\right)$ for every $i \in I$. Then ψ is a group isomorphism.

By [4] Exercise 10.2, $\left\{S F,\left(S \varphi_{i}\right)_{i \in I}\right\}$ is the limit in \mathfrak{M}_{E} of the inductive system $\left\{\left(S F_{i}\right)_{i \in I},\left(S \varphi_{i j}\right)_{i, j \in I}\right\}$. By Theorem 6.2.12, $\left\{K_{0}(S F),\left(K_{0}\left(S \varphi_{i}\right)\right)_{i \in I}\right\}$ may be identified with the inductive limit in the category of additive groups of the inductive system $\left\{K_{0}\left(S F_{i}\right)_{i \in I},\left(K_{0}\left(S \varphi_{i j}\right)\right)_{i, j \in I}\right\}$ and the assertion follows from Theorem 7.3.2.

PROPOSITION 7.3.7 Let F be an $E-C^{*}$-algebra, $n \in \mathbb{N}, U \in U n \check{F}_{n-1}, V \in U n(\overbrace{C F}^{\sim})_{n}$, and $P \in \operatorname{Pr}(\overbrace{S F}^{\sim})_{n}$ such that

$$
\check{j}_{F} V=A_{n} U+B_{n} U^{*}, \quad \check{i}_{F} P=V A_{n} V^{*}
$$

Then

$$
\theta_{F}[U]_{1}=[P]_{0}-\left[\sigma_{n}^{S F} P\right]_{0}
$$

The assertion follows from Corollary 7.2.3 and Definition 7.3.1.

PROPOSITION 7.3.8 If $F \xrightarrow{\varphi} G$ is a morphism in \mathfrak{M}_{E} then the diagram

is commutative.

The diagram

is commutative and the assertion follows from Proposition 7.2.4.
Remark. By Theorem 7.3.2 and Proposition 7.3.8, the functor K_{1} is determined by the functor K_{0}.

COROLLARY 7.3.9 (Split Exact Theorem) If

$$
0 \longrightarrow F \xrightarrow{\varphi} G_{\overleftrightarrow{Y}}^{\stackrel{\psi}{\gamma}} H \longrightarrow 0
$$

is a split exact sequence in \mathfrak{M}_{E} then

$$
0 \longrightarrow K_{1}(F) \xrightarrow{K_{1}(\varphi)} K_{1}(G) \stackrel{K_{1}(\psi)}{K_{1}(\gamma)} K_{1}(H) \longrightarrow 0
$$

is also split exact. In particular the map

$$
K_{1}(F) \times K_{1}(H) \longrightarrow K_{1}(G), \quad(a, b) \longmapsto K_{1}(\varphi) a+K_{1}(\lambda) b
$$

is a group isomorphism and $K_{1}(\check{F}) \approx K_{1}(E) \times K_{1}(F)$.

By Theorem 7.2.9, the sequence

$$
K_{1}(F) \xrightarrow{K_{1}(\varphi)} K_{1}(G) \xrightarrow{K_{1}(\psi)} K_{1}(H) \xrightarrow{\delta_{1}} K_{0}(F) \xrightarrow{K_{0}(\varphi)} K_{0}(G) \xrightarrow{K_{0}(\psi)} K_{0}(H)
$$

is exact and by Proposition 7.1.8 a) and Proposition 7.1.6 d),

$$
K_{1}(\psi) \circ K_{1}(\gamma)=K_{1}(\psi \circ \gamma)=K_{1}\left(i d_{H}\right)=i d_{K_{1}(H)}
$$

It remains only to prove that $K_{1}(\varphi)$ is injective.
It is easy to see that

$$
0 \longrightarrow S F \xrightarrow{S \varphi} S G \underset{L}{\frac{S \psi}{S \gamma}} S H \longrightarrow 0
$$

is split exact. By Proposition 6.2.9, $K_{0}(S \varphi)$ is injective and by Proposition 7.3.8, the diagram

is commutative. Since θ_{F} is injective (Theorem 7.3.2), $K_{1}(\varphi)$ is also injective.

Chapter 7 The Functor K_{1}

The last assertion follows from the fact that

$$
0 \longrightarrow F \stackrel{i^{F}}{\longrightarrow} \check{F} \stackrel{\pi^{F}}{\underset{\lambda^{F}}{\longrightarrow}} E \longrightarrow 0
$$

is split exact.

COROLLARY 7.3.10 Let

$$
0 \longrightarrow F \stackrel{\varphi}{\longrightarrow} G \underset{\underset{\sim}{\gamma}}{\stackrel{\psi}{\gamma}} H \longrightarrow 0, \quad 0 \longrightarrow F^{\prime} \xrightarrow{\varphi^{\prime}} G^{\frac{\psi^{\prime}}{\underset{\sim}{\gamma^{\prime}}}} H^{\prime} \longrightarrow 0
$$

be split exact sequences in \mathfrak{M}_{E} and

$$
F \xrightarrow{\lambda} F^{\prime}, \quad G \xrightarrow{\mu} G^{\prime}, \quad H \xrightarrow{v} H^{\prime}
$$

morphisms in \mathfrak{M}_{E} such that the corresponding diagram is commutative and let $i \in\{0,1\}$.
a) If we denote by

$$
\begin{gathered}
\phi: K_{i}(F) \times K_{i}(H) \longrightarrow K_{i}(G), \quad(a, b) \longmapsto K_{i}(\varphi) a+K_{i}(\gamma) b, \\
\phi^{\prime}: K_{i}\left(F^{\prime}\right) \times K_{i}\left(H^{\prime}\right) \longrightarrow K_{i}\left(G^{\prime}\right), \quad\left(a^{\prime}, b^{\prime}\right) \longmapsto K_{i}\left(\varphi^{\prime}\right) a^{\prime}+K_{i}\left(\gamma^{\prime}\right) b^{\prime}
\end{gathered}
$$

the group isomorphisms (Proposition 6.2.9, Corollary 7.3.9) then

$$
K_{i}(\mu) \circ K_{i}(\phi)=K_{i}\left(\phi^{\prime}\right) \circ\left(K_{i}(\lambda) \times K_{i}(v)\right)
$$

b) If we identify $K_{i}(G)$ with $K_{i}(F) \times K_{i}(H)$ using ϕ and $K_{i}\left(G^{\prime}\right)$ with $K_{i}\left(F^{\prime}\right) \times K_{i}\left(H^{\prime}\right)$ using ϕ^{\prime} then

$$
K_{i}(\mu): K_{i}(G) \longrightarrow K_{i}\left(G^{\prime}\right), \quad(a, b) \longmapsto\left(K_{i}(\lambda) a, K_{i}(v) b\right) .
$$

a) For $(a, b) \in K_{i}(F) \times K_{i}(H)$,

$$
\begin{gathered}
K_{i}(\mu) K_{i}(\phi)(a, b)=K_{i}(\mu)\left(K_{i}(\varphi) a+K_{i}(\gamma) b\right)= \\
=K_{i}\left(\varphi^{\prime}\right) K_{i}(\lambda) a+K_{i}\left(\gamma^{\prime}\right) K_{i}(v) b=K_{i}\left(\phi^{\prime}\right)\left(K_{i}(\lambda) \times K_{i}(v)\right)(a, b) .
\end{gathered}
$$

b) follows from a).

Chapter 8

Bott Periodicity

8.1 The Bott Map

LEMMA 8.1.1 Let F be a full E - C^{*}-algebra and $n \in \mathbb{N}$. We identify $S F$ with $\mathscr{C}_{0}(\mathbb{T} \backslash\{1\}, F)$ in an obvious way.
a) $F_{\mathbb{I}}:=\{X \in \mathscr{C}(\mathbb{T}, F) \mid X(1) \in E\}$ is a full E - C^{*}-subalgebra of $\mathscr{C}(\mathbb{I}, F)$.
b) If we put for every $(\alpha, x) \in \overbrace{\overbrace{S F}^{2}}^{2}$

$$
\overbrace{(\alpha, x)}: \mathbb{T} \longrightarrow F, \quad z \longmapsto \alpha+x(z)
$$

then the map

$$
\psi: \overbrace{S F}^{\stackrel{ }{2}} \longrightarrow F_{\text {II }}, \quad(\alpha, x) \longmapsto \overbrace{(\alpha, x)}
$$

is an $E-C^{*}$-isomorphism. Thus the map

$$
\psi_{n}:(\overbrace{S F}^{\sim}) n \longrightarrow\left(F_{\text {II }}\right)_{n}
$$

is also an E-C*-isomorphism.
c) For every $Y \in\left(F_{\mathbb{I}}\right)_{n}$ put

$$
\ddot{Y}: \mathbb{T} \longrightarrow F_{n}, \quad z \longmapsto \sum_{t \in T_{n}}\left(Y_{t}(z) \otimes i d_{K}\right) V_{t}
$$

Then $\ddot{Y} \in\left\{X \in \mathscr{C}\left(\mathbb{I}, F_{n}\right) \mid X(1) \in E_{n}\right\}$ for every $Y \in\left(F_{\mathbb{I}}\right)_{n}$ and the map

$$
\phi^{n}:\left(F_{\mathbb{I}}\right)_{n} \longrightarrow\left\{X \in \mathscr{C}\left(\mathbb{I}, F_{n}\right) \mid X(1) \in E_{n}\right\}, \quad Y \longmapsto \ddot{Y}
$$

is an $E-C^{*}$-isomorphism.
d) The map

$$
\phi^{n} \circ \psi_{n}:(\overbrace{S F}^{\sim})_{n} \longrightarrow\left\{X \in \mathscr{C}\left(\mathbb{I}, F_{n}\right) \mid X(1) \in E_{n}\right\}
$$

is an E-C*-isomorphism. We identify these two full E-C*-algebras by using this isomorphism.The map

$$
U n(\overbrace{S F}^{\sim}) n \longrightarrow\left\{X \in \mathscr{C}\left(\mathbb{T}, U n F_{n}\right) \mid X(1) \in U n E_{n}\right\}
$$

defined by $\phi^{n} \circ \psi_{n}$ is a homeomorphism.
e) For every

$$
X:=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, X_{t}\right) \otimes i d_{K}\right) V_{t} \in(\overbrace{S F}^{\sim}) n
$$

and $z \in \mathbb{T}$,

$$
\begin{gathered}
\left(\phi^{n} \psi_{n} X\right)(z)=\sum_{t \in T_{n}}\left(\left(\alpha_{t}+X_{t}(z)\right) \otimes i d_{K}\right) V_{t} \in F_{n}, \\
\left(\phi^{n} \psi_{n} X\right)(1)=\sum_{t \in T_{n}}\left(\alpha_{t} \otimes i d_{K}\right) V_{t} \in E_{n} .
\end{gathered}
$$

f) Consider the split exact sequence in \mathfrak{M}_{E} (Definition 4.1.4)

$$
0 \longrightarrow S F \xrightarrow{\iota^{S F}} \overbrace{S F}^{\sim} \underset{\imath^{S F}}{\pi^{S F}} E \longrightarrow 0 .
$$

Then

$$
\left(\pi^{S F}\right)_{n} X=\left(\phi^{n} \psi_{n} X\right)(1)
$$

for every $X \in(\overbrace{S F}^{\sim}) n$.
g) If $F \xrightarrow{\varphi} G$ is a morphism in \mathfrak{C}_{E} then, by the identification of d), for every $X \in \mathscr{C}\left(\mathbb{I}, F_{n}\right)$ with $X(1) \in E_{n}$ and for every $z \in \mathbb{I}$,

$$
((\overbrace{S \varphi})_{n} X)(z)=\varphi_{n} X(z)
$$

a) is obvious.
b) For $(\alpha, x),(\beta, y) \in \overbrace{S F}, \gamma \in E$, and $z \in \mathbb{T}$,

$$
(\overbrace{(\alpha, x)})^{*}(z)=\alpha^{*}+x(z)^{*}=\overbrace{(\alpha, x)^{*}}(z),
$$

$$
\left.\begin{array}{rl}
(\overbrace{(\alpha, x)}(z))(\overbrace{(\beta, y)} \\
(z))=(\alpha+x(z))(\beta+y(z))=\alpha \beta+\alpha y(z)+x(z) \beta+x(z) y(z)= \\
=\overbrace{(\alpha \beta, \alpha y+\beta x+x y)}(z)=\overbrace{(\alpha, x)(\beta, y)}(z)
\end{array}\right)
$$

so ψ is an $E-\mathrm{C}^{*}$-homomorphism. If $\overbrace{(\alpha, x)}=0$ then for all $z \in \mathbb{\mathbb { I }}$

$$
\alpha=\alpha+x(1)=0, \quad x(z)=\alpha+x(z)=0, \quad x=0
$$

so ψ is injective.
Let $X \in F_{\text {II }}$ and put $\alpha:=X(1) \in E$ and

$$
x: \mathbb{I} \longrightarrow F, \quad z \longmapsto X(z)-X(1)
$$

Then $(\alpha, x) \in \overbrace{\overbrace{S F}}^{\sim}$ and for $z \in \mathbb{T}$,

$$
\overbrace{(\alpha, x)}(z)=\alpha+x(z)=X(1)+X(z)-X(1)=X(z) .
$$

Thus $\overbrace{(\alpha, x)}=X$ and ψ is surjective.
By [2] Corollary 2.2.5 and [2] Theorem 2.1.9 a), ψ_{n} is an isomorphism.
c) follows from [2] Proposition 2.3.7 and [2] Theorem 2.1.9 a).
d) follows from b) and c).
e) We have

$$
\begin{gathered}
\psi_{n} X=\sum_{t \in T_{n}}(\overbrace{\left(\alpha_{t}, X_{t}\right)} \otimes i d_{K}) V_{t}, \\
\left(\phi^{n} \psi_{n} X\right)(z)=\sum_{t \in T_{n}}\left(\left(\alpha_{t}+X_{t}(z)\right) \otimes i d_{K}\right) V_{t} \in F_{n}, \\
\left(\phi^{n} \psi_{n} X\right)(1)=\sum_{t \in T_{n}}\left(\alpha_{t} \otimes i d_{K}\right) V_{t} \in E_{n} .
\end{gathered}
$$

f) and g) follow from e).

DEFINITION 8.1.2 We put for every full $E-C^{*}$-algebra $F, n \in \mathbb{N}$, and $P \in F_{n}$,

$$
\widetilde{P}: \mathbb{T} \longrightarrow F_{n}, \quad z \longmapsto z P+\left(1_{E}-P\right) .
$$

By the identification of Lemma 8.1.1 d),

$$
\widetilde{P} \in\left\{X \in \mathscr{C}\left(\mathbb{T}, U n F_{n}\right) \mid X(1) \in E_{n}\right\}=U n(\overbrace{S F}^{\sim}) n
$$

for every $P \in \operatorname{Pr} F_{n}$. Obviously, $\widetilde{0}=1_{E}$ and $\widetilde{1_{E}}=z 1_{E}$.

PROPOSITION 8.1.3 If F is a full E - C^{*}-algebra, $n \in \mathbb{N}$, and $P \in \operatorname{Pr} F_{n-1}$ then

$$
\overbrace{\bar{\tau}_{n}^{S F}} \widetilde{P}=\widetilde{\bar{\rho}_{n}^{F} P},
$$

(with the identification of Lemma 8.1.1 d)). Thus we get a well-defined map

$$
v_{F}: \operatorname{Pr} F_{\rightarrow} \longrightarrow u n \overbrace{S F}^{v}
$$

with $v_{F} P=\widetilde{P}$ for every $P \in \operatorname{Pr} F_{\rightarrow}=\bigcup_{n \in \mathbb{N}} \operatorname{Pr} F_{\rightarrow n}$.

For $z \in \mathbb{T}$,

$$
\begin{aligned}
(\overbrace{\tau_{n}^{S F}}^{\overbrace{P}} \widetilde{P})(z) & =\left(A_{n} \widetilde{P}+B_{n}\right)(z)=A_{n}\left(z P+\left(1_{E}-P\right)\right)+B_{n}= \\
& =z A_{n} P+\left(1_{E}-A_{n} P\right)=\widetilde{\bar{\rho}_{n}^{F} P}(z) .
\end{aligned}
$$

PROPOSITION 8.1.4 For every full $E-C^{*}$-algebra F there is a unique group homomorphism

$$
\beta_{F}: K_{0}(F) \longrightarrow K_{1}(S F) \quad \text { (the Bott map) }
$$

such that for every $P \in \operatorname{Pr} F_{\rightarrow}$,

$$
\beta_{F}[P]_{0}=\left(v_{F} P\right) / \sim_{1}=[\tilde{P}]_{1} .
$$

Let $P, Q \in \operatorname{Pr} F_{\rightarrow}$ with $P \sim_{0} Q$. By Proposition 6.2.6, there are $m, n \in \mathbb{N}, m \geq n+2$, and $U \in U n_{0} F_{m}$ with $P, Q \in \operatorname{Pr} F_{n}$ and $U P U^{*}=Q$ and so

$$
\left(U \widetilde{P} U^{*}\right)(z)=U \widetilde{P}(z) U^{*}=z U P U^{*}+\left(1_{E}-U P U^{*}\right)=\widetilde{Q}(z)
$$

for every $z \in \mathbb{I}$. Thus $U \widetilde{P} U^{*}=\widetilde{Q}, \widetilde{P} \sim_{h} \widetilde{Q}$, and $\widetilde{P} \sim_{1} \widetilde{Q}$.
Let $P, Q \in \operatorname{Pr} F_{\rightarrow}$ with $P Q=0$. We may assume $P, Q \in \operatorname{Pr} F_{n-1}$ with $P=P A_{n}$ and $Q=Q B_{n}$ for some $n \in \mathbb{N}$ (Proposition 6.1.3). For every $z \in \mathbb{T}$,

$$
\begin{gathered}
\widetilde{P}(z)=z P A_{n}+\left(1_{E}-P A_{n}\right), \quad \widetilde{Q}(z)=z Q B_{n}+\left(1_{E}-Q B_{n}\right), \\
(\widetilde{P} \widetilde{Q})(z)=\widetilde{P}(z) \widetilde{Q}(z)=z P A_{n}+z Q B_{n}+1_{E}-Q B_{n}-P A_{n}=
\end{gathered}
$$

$$
=z(P+Q)+\left(1_{E}-(P+Q)\right)=(\widetilde{P+Q})(z), \quad \widetilde{P} \widetilde{Q}=\widetilde{P+Q} .
$$

By Proposition 6.1.9, there is a unique group homomorphism

$$
\beta_{F}: K_{0}(F) \longrightarrow K_{1}(S F)
$$

with the required property.

PROPOSITION 8.1.5 Let F be an $E-C^{*}$-algebra.
a) There is a unique map $\beta_{F}: K_{0}(F) \longrightarrow K_{1}(S F)$ (called the Bott map) such that the diagram

is commutative. β_{F} is a group homomorphism.
b) If F is a full $E-C^{*}$-algebra then the above map β_{F} coincides with the map β_{F} defined in Proposition 8.1.4.
c) If $F \xrightarrow{\varphi} G$ is a morphism in \mathfrak{M}_{E} then the diagram

is commutative.
c) for \mathfrak{C}_{E} with $F \xrightarrow{\varphi} G$ unital. For $n \in \mathbb{N}, P \in \operatorname{Pr} F_{n}$, and $z \in \mathbb{T}$, by Lemma 8.1.1 g),

$$
\begin{gathered}
((\overbrace{S \varphi}^{\sim})_{n} \widetilde{P})(z)=z \varphi_{n} P+\left(1_{E}-\varphi_{n} P\right)=\left(\widetilde{\varphi_{n} P}\right)(z), \\
(\overbrace{S \varphi})_{n} \widetilde{P}=\widetilde{\varphi_{n} P} .
\end{gathered}
$$

By Proposition 6.1.10 c), Proposition 8.1.4, and Proposition 7.1.6 c),

$$
\begin{gathered}
K_{1}(S \varphi) \beta_{F}[P]_{0}=K_{1}(S \varphi)[\widetilde{P}]_{1}= \\
=[(\overbrace{S \varphi}^{\sim}){ }_{n} \widetilde{P}]_{1}=\left[\widetilde{\varphi_{n} P}\right]_{1}=\beta_{G}\left[\varphi_{n} P\right]_{0}=\beta_{G} K_{0}(\varphi)[P]_{0} \\
K_{1}(S \varphi) \circ \beta_{F}=\beta_{G} \circ K_{0}(\varphi) .
\end{gathered}
$$

a) By c) for \mathfrak{C}_{E}, the diagram

is commutative. By Proposition 6.1 .12 c) and Corollary 7.3.9 the sequences

$$
\begin{gathered}
0 \longrightarrow K_{0}(F) \xrightarrow{K_{0}\left(1^{F}\right)} K_{0}(\check{F}) \xrightarrow{K_{0}\left(\pi^{F}\right)} K_{0}(E) \longrightarrow 0, \\
0 \longrightarrow K_{1}(S F) \xrightarrow{K_{1}\left(S_{1}^{F}\right)} K_{1}(S \check{F}) \xrightarrow{K_{1}\left(S \pi^{F}\right)} K_{1}(S E) \longrightarrow 0
\end{gathered}
$$

are exact, since the sequence

$$
0 \longrightarrow S F \xrightarrow{S l^{F}} S \check{F} \underset{{ }^{S \lambda^{F}}}{\stackrel{S \pi^{F}}{ }} S E \longrightarrow 0
$$

is split exact. By the above c) for \mathfrak{C}_{E}, Corollary 6.2.3 a), and Proposition 6.2.2 e),

$$
\begin{gathered}
K_{1}\left(S \pi^{F}\right) \circ \beta_{\breve{F}} \circ K_{0}\left(\imath^{F}\right)=\beta_{E} \circ K_{0}\left(\pi^{F}\right) \circ K_{0}\left(\imath^{F}\right)= \\
\quad=\beta_{E} \circ K_{0}\left(\pi^{F} \circ \imath^{F}\right)=\beta_{E} \circ K_{0}(0)=0 .
\end{gathered}
$$

Thus

$$
\operatorname{Im}\left(\beta_{\check{F}} \circ K_{0}\left(\imath^{F}\right)\right) \subset \operatorname{Ker} K_{1}\left(S \pi^{F}\right)=\operatorname{Im} K_{1}\left(S l^{F}\right)
$$

The assertion follows now from the fact that $K_{1}\left(S l^{F}\right)$ is injective.
b) By c) for \mathfrak{C}_{E}, the diagram

is commutative, with β_{F} defined in Proposition 8.1.4. By a), this β_{F} coincides with β_{F} defined in a).
c) The following diagrams

are obviously commutative (Proposition 7.1.8 a)). So by a) and c) for \mathfrak{C}_{E} (and Corollary 6.2.3 a), Proposition 7.1.8 a)),

$$
\begin{gathered}
K_{1}\left(S \imath^{G}\right) \circ \beta_{G} \circ K_{0}(\varphi)=\beta_{\check{G}} \circ K_{0}\left(\imath^{G}\right) \circ K_{0}(\varphi)=\beta_{\check{G}} \circ K_{0}(\check{\varphi}) \circ K_{0}\left(\imath^{F}\right)= \\
=K_{1}(S \check{\varphi}) \circ \beta_{\check{F}} \circ K_{0}\left(\imath^{F}\right)=K_{1}(S \check{\varphi}) \circ K_{1}\left(S \imath^{F}\right) \circ \beta_{F}=K_{1}\left(S \imath \imath^{G}\right) \circ K_{1}(S \varphi) \circ \beta_{F} .
\end{gathered}
$$

The assertion follows now from the fact that $K_{1}\left(\mathrm{Sl}^{G}\right)$ is injective.

8.2 Higman's Linearization Trick

Throughout this section F denotes a full $E-C^{*}$-algebra, $m, n \in \mathbb{N}$, and $l:=2^{m}-1$.

DEFINITION 8.2.1 We shall use the following notation ([4] 11.2):

$$
\begin{gathered}
\operatorname{Trig}(n):=\left\{X \in \mathscr{C}\left(\mathbb{T}, G L_{E_{n}}\left(F_{n}\right)\right) \mid X(z)=\sum_{p=-m}^{m} a_{p} z^{p}, a_{p} \in F_{n}\right\}, \\
\operatorname{Pol}(n, m):=\left\{X \in \mathscr{C}\left(\mathbb{I}, G L_{E_{n}}\left(F_{n}\right)\right) \mid X(z)=\sum_{p=0}^{m} a_{p} z^{p}, a_{p} \in F_{n}\right\}, \\
\operatorname{Pol}(n):=\bigcup_{m \in \mathbb{N}} \operatorname{Pol}(n, m), \quad \operatorname{Lin}(n):=\operatorname{Pol}(n, 1), \\
\operatorname{Proj}(n):=\left\{\widetilde{P} \mid P \in \operatorname{Pr} F_{n}\right\} .
\end{gathered}
$$

LEMMA 8.2.2

a) If $X \in \mathscr{C}\left(\mathbb{I}, G L_{E_{n}}\left(F_{n}\right)\right)$ then there are $k \in \mathbb{N}$ and $Y \in \operatorname{Pol}(n)$ such that $z^{k} X$ is homotopic to Y in $\mathscr{C}\left(\mathbb{I}, G L_{E_{n}}\left(F_{n}\right)\right)$.
b) If $P, Q \in \operatorname{Pr} F_{n}$ such that \widetilde{P} and \widetilde{Q} are homotopic in $\mathscr{C}\left(\mathbb{I}, G L_{E_{n}}\left(F_{n}\right)\right)$ then there are $k, m \in \mathbb{N}$ such that $z^{k} \widetilde{P}$ is homotopic to $z^{k} \widetilde{Q}$ in $\operatorname{Pol}(n, l)$.
a) It is possible to adapt [4] Lemma 11.2 .3 to the present situation in order to find a $Z \in \operatorname{Trig}(n)$ such that

$$
\|X-Z\|<\left\|X^{-1}\right\|^{-1}
$$

By [4] Proposition 2.1.11, X and Z are homotopic in $\mathscr{C}\left(\mathbb{I}, G L_{E_{n}}\left(F_{n}\right)\right)$. There is a $k \in \mathbb{N}$ such that $Y:=z^{k} Z \in \operatorname{Pol}(n)$. Then $z^{k} X$ and Y are homotopic in $\mathscr{C}\left(\mathbb{I}, G L_{E_{n}}\left(F_{n}\right)\right)$.
b) The proof of [4] Lemma 11.2.4 (ii) works in this case too.

DEFINITION 8.2.3 The map

$$
\{0,1\}^{m} \longrightarrow \mathbb{N}_{1} \cup\{0\}, \quad j \longmapsto \sum_{i=1}^{m} j_{i} 2^{i-1}
$$

is bijective. We denote by

$$
\mathbb{N}_{1} \cup\{0\} \longrightarrow\{0,1\}^{m}, \quad p \longmapsto|p|
$$

its inverse. For every $i \in \mathbb{N}_{\mathrm{m}}$ and $p, q \in \mathbb{N}_{\mathrm{l}} \cup\{0\}$ we put

$$
(p, q)_{i}:=\left\{\begin{array}{ccc}
A_{n+i} & \text { if } & |p|_{i}=|q|_{i}=0 \\
C_{n+i}^{*} & \text { if } & |p|_{i}=0,|q|_{i}=1 \\
C_{n+i} & \text { if } & |p|_{i}=1,|q|_{i}=0 \\
B_{n+i} & \text { if } & |p|_{i}=|q|_{i}=1
\end{array} .\right.
$$

LEMMA 8.2.4

a) For $p, q, r, s \in \mathbb{N}_{\mathrm{l}} \cup\{0\}$ and $i \in \mathbb{N}_{\mathrm{m}}$,

$$
(p, q)_{i}(r, s)_{i}=\left\{\begin{array}{ccc}
0 & \text { if } & |q|_{i} \neq|r|_{i} \\
(p, s)_{i} & \text { if } & |q|_{i}=|r|_{i}
\end{array} .\right.
$$

In particular

$$
\prod_{i=1}^{m}\left((p, q)_{i}(r, s)_{i}\right)=\left\{\begin{array}{cll}
0 & \text { if } & q \neq r \\
\prod_{i=1}^{m}(p, s)_{i} & \text { if } & q=r
\end{array}\right.
$$

b) For $p, q \in \mathbb{N}_{1} \cup\{0\}$ and $i \in \mathbb{N}_{\mathrm{m}}$,

$$
\begin{aligned}
& A_{n+i}(p, q)_{i}=\left\{\begin{array}{ccc}
(p, q)_{i} & \text { if } & |p|_{i}=0 \\
0 & \text { if } & |p|_{i}=1
\end{array},\right. \\
& (p, q)_{i} A_{n+i}=\left\{\begin{array}{ccc}
(p, q)_{i} & \text { if } & |q|_{i}=0 \\
0 & \text { if } & |q|_{i}=1
\end{array} .\right.
\end{aligned}
$$

In particular

$$
\begin{aligned}
& p \neq 0 \Longrightarrow \prod_{i=1}^{m}\left(A_{n+i}(p, q)_{i}\right)=0 \\
& q \neq 0 \Longrightarrow \prod_{i=1}^{m}\left((p, q)_{i} A_{n+i}\right)=0
\end{aligned}
$$

$$
\sum_{r=q}^{l} \prod_{i=1}^{m}\left(A_{n+i}(r, r-q)_{i}\right)=\left\{\begin{array}{ccc}
0 & \text { if } & q \neq 0 \\
\prod_{i=1}^{m} A_{n+i} & \text { if } & q=0
\end{array}\right.
$$

c) $\sum_{p=0}^{l} \prod_{i=1}^{m}(p, p)_{i}=1_{E}$.
a) and b) is a long verification.
c) For every $p \in \mathbb{N}_{1} \cup\{0\}$ put

$$
J_{p}:=\left\{\left.i \in \mathbb{N}_{\mathrm{m}}| | p\right|_{i}=0\right\}, \quad K_{p}:=\left\{\left.i \in \mathbb{N}_{\mathrm{m}}| | p\right|_{i}=1\right\}
$$

Then

$$
1_{E}=\prod_{i=1}^{m}\left(A_{n+i}+B_{n+i}\right)=\sum_{p=0}^{l}\left(\prod_{i \in J_{p}} A_{n+i}\right)\left(\prod_{i \in K_{p}} B_{n+i}\right)=\sum_{p=0}^{l} \prod_{i=1}^{m}(p, p)_{i} .
$$

LEMMA 8.2.5 Let $a \in\left(F_{n}\right)^{l}$ and

$$
X:=\sum_{p=1}^{l} a_{p} \sum_{q=p}^{l} \prod_{i=1}^{m}(q, q-p)_{i} \quad\left(X \in F_{m+n}\right)
$$

a) $X^{2^{m}}=0$.
b) $1_{E}-X$ is invertible.
a) We put $D:=\mathbb{N}_{\mathrm{l}}$ and for every $k \in \mathbb{N}$ and $p \in D^{k}$,

$$
p^{(k)}:=\sum_{j=1}^{k} p_{j}, \quad \quad a_{p}^{(k)}:=\prod_{j=1}^{k} a_{p_{j}}
$$

We want to prove by induction that for every $k \in \mathbb{N}$,

$$
X^{k}=\sum_{p \in D^{k}} a_{p}^{(k)} \sum_{q=p^{(k)}}^{l} \prod_{i=1}^{m}\left(q, q-p^{(k)}\right)_{i}
$$

The assertion holds for $k=1$. Assume the assertion holds for $k \in \mathbb{N}$. Then

$$
X^{k+1}=\sum_{p \in D^{k}} \sum_{p^{\prime} \in D} a_{p}^{(k)} a_{p^{\prime}} \sum_{q=p^{(k)}}^{l} \sum_{q^{\prime}=p^{\prime}}^{l} \prod_{i=1}^{m}\left(\left(q, q-p^{(k)}\right)_{i}\left(q^{\prime}, q^{\prime}-p^{\prime}\right)_{i}\right)
$$

By Lemma 8.2.4 a),

$$
\begin{aligned}
X^{k+1}= & \sum_{p \in D^{k}} \sum_{p^{\prime} \in D} a_{p}^{(k)} a_{p^{\prime}} \sum_{q=p^{(k)}+p^{\prime}}^{l} \prod_{i=1}^{m}\left(q, q-p^{(k)}-p^{\prime}\right)_{i}= \\
& =\sum_{p \in D^{k+1}} a_{p}^{(k+1)} \sum_{q=p^{(k+1)}}^{l} \prod_{i=1}^{m}\left(q, q-p^{(k+1)}\right)_{i},
\end{aligned}
$$

which finishes the inductive proof. Since $p^{(k)} \geq k$ for every $k \in \mathbb{N}$ we get $X^{2^{m}}=0$.
b) By a), $1_{E}+\sum_{k=1}^{l} X^{k}$ is the inverse of $1_{E}-X$.

PROPOSITION 8.2.6 (Higman's linearization trick) There is a continuous map

$$
\mu: \operatorname{Pol}(n, l) \longrightarrow \operatorname{Lin}(n+m)
$$

such that μX is homotopic to $X\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)$ in $\operatorname{Pol}(n+m, 2 l+1)$ for every $X \in \operatorname{Pol}(n, l)$. If $X \in \operatorname{Proj}(n)$ then the above homotopy takes place in $\operatorname{Lin}(n+1)$.

Assume $X \in \operatorname{Pol}(n, l)$ is given by

$$
X=\sum_{p=0}^{l} a_{p} z^{p}
$$

where $a_{p} \in F_{n}$ for every $p \in \mathbb{N}_{l} \cup\{0\}$. Put

$$
X_{p}:=\sum_{q=p}^{l} a_{q} z^{q-p} \quad\left(\in \mathscr{C}\left(\mathbb{I}, F_{n}\right)\right)
$$

for all $p \in \mathbb{N}_{l} \cup\{0\}$ and for all $s \in[0,1]$,

$$
\begin{array}{cc}
Y_{s}:=1_{E}-s \sum_{p=1}^{l} X_{p} \prod_{i=1}^{m}(0, p)_{i} & \left(\in \mathscr{C}\left(\mathbb{I}, F_{n+m}\right)\right), \\
Z_{S}:=1_{E}+s \sum_{q=1}^{l} z^{q} \sum_{r=q}^{l} \prod_{i=1}^{m}(r, r-q)_{i} & \left(\in \mathscr{C}\left(\mathbb{I}, F_{n+m}\right)\right) .
\end{array}
$$

By Lemma 8.2.4 a),

$$
\begin{aligned}
Y_{s}\left(1_{E}\right. & \left.+s \sum_{p=1}^{l} X_{p} \prod_{i=1}^{m}(0, p)_{i}\right)=\left(1_{E}+s \sum_{p=1}^{l} X_{p} \prod_{i=1}^{m}(0, p)_{i}\right) Y_{s}= \\
& =1_{E}+s^{2} \sum_{p, q=1}^{l} X_{p} X_{q} \prod_{i=1}^{m}\left((0, p)_{i}(0, q)_{i}\right)=1_{E}
\end{aligned}
$$

so Y_{s} is invertible. By Lemma 8.2.5 b), Z_{s} is also invertible. Thus for every $s \in[0,1], Y_{s}$ and Z_{s} are homotopic to 1_{E} in $\mathscr{C}\left(\mathbb{T}, G L\left(F_{n+m}\right)\right)$ and belong therefore to $\operatorname{Pol}(n+m, l)$. By Lemma 8.2.4 c),

$$
Z_{1}=\sum_{q=0}^{l} z^{q} \sum_{r=q}^{l} \prod_{i=1}^{m}(r, r-q)_{i}
$$

Put

$$
\mu X:=1_{E}-\prod_{i=1}^{m} A_{n+i}+\sum_{p=0}^{l} a_{p} \prod_{i=1}^{m}(0, p)_{i}-z \sum_{p=1}^{l} \prod_{i=1}^{m}(p, p-1)_{i}\left(\in \mathscr{C}\left(\mathbb{I}, F_{n+m}\right)\right) .
$$

For $z \in \mathbb{T}$,

$$
\left((\mu X) Z_{1}\right)(z)=\sum_{p=0}^{l} z^{p} \sum_{q=p}^{l} \prod_{i=1}^{m}(q, q-p)_{i}-\sum_{p=0}^{l} z^{p} \sum_{q=p}^{l} \prod_{i=1}^{m}\left(A_{n+i}(q, q-p)_{i}\right)+
$$

$$
+\sum_{p, q=0}^{l} a_{p} z^{q} \sum_{r=q}^{l} \prod_{i=1}^{m}\left((0, p)_{i}(r, r-q)_{i}\right)-\sum_{q=0}^{l} z^{q+1} \sum_{p=1}^{l} \sum_{r=q}^{l} \prod_{i=1}^{m}\left((p, p-1)_{i}(r, r-q)_{i}\right) .
$$

By Lemma 8.2.4 b),

$$
\sum_{p=0}^{l} z^{p} \sum_{q=p}^{l} \prod_{i=1}^{m}\left(A_{n+i}(q, q-p)_{i}\right)=\prod_{i=1}^{m} A_{n+i}
$$

and by Lemma 8.2.4 a),

$$
\begin{gathered}
\sum_{p, q=0}^{l} a_{p} z^{q} \sum_{r=q}^{l} \prod_{i=1}^{m}\left((0, p)_{i}(r, r-q)_{i}\right)=\sum_{q=0}^{l} z^{q} \sum_{p=q}^{l} a_{p} \prod_{i=1}^{m}(0, p-q)_{i}= \\
=\sum_{q=0}^{l} z^{q} \sum_{r=0}^{l-q} a_{q+r} \prod_{i=1}^{m}(0, r)_{i}=\sum_{r=0}^{l} \sum_{q=0}^{l-r} z^{q} a_{q+r} \prod_{i=1}^{m}(0, r)_{i}= \\
=\sum_{r=0}^{l} \sum_{s=r}^{l} z^{s-r} a_{s} \prod_{i=1}^{m}(0, r)_{i}=\sum_{r=0}^{l} X_{r} \prod_{i=1}^{m}(0, r)_{i} \\
\sum_{q=0}^{l} z^{q+1} \sum_{p=1}^{l} \sum_{r=q}^{l} \prod_{i=1}^{m}\left((p, p-1)_{i}(r, r-q)_{i}\right)= \\
=\sum_{q=0}^{l} z^{q+1} \sum_{p=q+1}^{l} \prod_{i=1}^{m}(p, p-q-1)_{i}=\sum_{q=1}^{l} z^{q} \sum_{p=q}^{l} \prod_{i=1}^{m}(p, p-q)_{i} .
\end{gathered}
$$

Thus by Lemma 8.2.4 c),

$$
\begin{gathered}
\left((\mu X) Z_{1}\right)(z)=\sum_{q=0}^{l} z^{q} \sum_{p=q}^{l} \prod_{i=1}^{m}(p, p-q)_{i}-\prod_{i=1}^{m} A_{n+i}+ \\
+\sum_{r=0}^{l} X_{r} \prod_{i=1}^{m}(0, r)_{i}-\sum_{q=1}^{l} z^{q} \sum_{p=q}^{l} \prod_{i=1}^{m}(p, p-q)_{i}= \\
=\sum_{p=0}^{l} \prod_{i=1}^{m}(p, p)_{i}-\prod_{i=1}^{m} A_{n+i}+\sum_{r=0}^{l} X_{r} \prod_{i=1}^{m}(0, r)_{i}=1_{E}-\prod_{i=1}^{m} A_{n+i}+\sum_{p=0}^{l} X_{p} \prod_{i=1}^{m}(0, p)_{i} .
\end{gathered}
$$

By Lemma 8.2.4 a),b), for $z \in \mathbb{T}$,

$$
\begin{gathered}
\left(Y_{1}(\mu X) Z_{1}\right)(z)=1_{E}-\prod_{i=1}^{m} A_{n+i}+\sum_{p=0}^{l} X_{p} \prod_{i=1}^{m}(0, p)_{i}-\sum_{p=1}^{l} X_{p} \prod_{i=1}^{m}(0, p)_{i}+ \\
\quad+\sum_{p=1}^{l} X_{p} \prod_{i=1}^{m}\left((0, p)_{i} A_{n+i}\right)-\sum_{p=1}^{l} \sum_{q=0}^{l} X_{p} X_{q} \prod_{i=1}^{m}\left((0, p)_{i}(0, q)_{i}\right)=
\end{gathered}
$$

$$
=1_{E}-\prod_{i=1}^{m} A_{n+i}+X_{0} \prod_{i=1}^{m}(0,0)_{i}=1_{E}-\prod_{i=1}^{m} A_{n+i}+X \prod_{i=1}^{m} A_{n+i} .
$$

Since $1_{E}-\prod_{i=1}^{m} A_{n+i}+X^{-1} \prod_{i=1}^{m} A_{n+i}$ is the inverse of $Y_{1}(\mu X) Z_{1}$ it follows that $Y_{1}(\mu X) Z_{1}$ and μX are invertible, i.e. they belong to $\mathscr{C}\left(\mathbb{I}, G L\left(F_{n+m}\right)\right)$. Thus for every $s \in[0,1]$, $Y_{s}(\mu X) Z_{s} \in \mathscr{C}\left(\mathbb{I}, G L\left(F_{n+m}\right)\right)$. Let $z \in \mathbb{T}$ and let

$$
[0,1] \longrightarrow G L\left(F_{n}\right), \quad s \longmapsto x_{s}
$$

be a continuous map with $x_{0}=X(z)$ and $x_{1}=1_{E}$. Since $1_{E}-\prod_{i=1}^{m} A_{n+i}+x_{s}^{-1} \prod_{i=1}^{m} A_{n+i}$ is the inverse of $1_{E}-\prod_{i=1}^{m} A_{n+i}+x_{s} \prod_{i=1}^{m} A_{n+i}$ for every $s \in[0,1]$ it follows that the map

$$
[0,1] \longrightarrow G L\left(F_{n+m}\right), \quad s \longmapsto 1_{E}-\prod_{i=1}^{m} A_{n+i}+x_{s} \prod_{i=1}^{m} A_{n+i}
$$

is well-defined and it is a homotopy from $\left(Y_{1}(\mu X) Z_{1}\right)(z)$ to 1_{E} i.e. $Y_{1}(\mu X) Z_{1} \in \mathscr{C}\left(\mathbb{T}, G L_{0}\left(F_{n+m}\right)\right)$ and $Y_{1}(\mu X) Z_{1} \in \operatorname{Pol}(n+m, l)$. By the above, for every $s \in[0,1], Y_{s}(\mu X) Z_{s} \in \mathscr{C}\left(\mathbb{I}, G L_{0}\left(F_{n+m}\right)\right)$, so $Y_{s}(\mu X) Z_{s} \in \operatorname{Pol}(n+m, 2 l+1)$. Hence μX is homotopic to $X\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \quad$ in $\operatorname{Pol}(n+m, 2 l+1) \quad$ and $\mu X \in \operatorname{Lin}(n+m)$.

In order to prove the last assertion remark that there is a $P \in \operatorname{Pr} F_{n}$ with $X=\widetilde{P}=$ $\left(1_{E}-P\right)+z P$. Then $m=l=1, a_{0}=1_{E}-P, a_{1}=P, X_{1}=a_{0}=P$,

$$
\mu X=1_{E}-P A_{n+1}+P C_{n+1}^{*}-z C_{n+1}
$$

and for every $s \in[0,1]$,

$$
Y_{s}=1_{E}-s P C_{n+1}^{*}, \quad Z_{s}:=1_{E}+s z C_{n+1}, \quad Y_{s}(\mu X) Z_{s} \in \operatorname{Lin}(n+1)
$$

Thus μX is homotopic to $Y_{1}(\mu X) Z_{1}$ in $\operatorname{Lin}(n+1)$.

8.3 The Periodicity

Throughout this section F denotes a full E - C^{*}-algebra, $m, n \in \mathbb{N}$, and $l:=2^{m}-1$.

LEMMA 8.3.1 If $X \in \mathscr{C}\left(\mathbb{I}, G L\left(F_{n}\right)\right)$ and $X(1) \in G L_{E_{n}}\left(F_{n}\right)$ then

$$
X \in \mathscr{C}\left(\mathbb{T}, G L_{E_{n}}\left(F_{n}\right)\right) .
$$

Let $\theta \in[0,2 \pi[$ and for every $s \in[0,1]$ put

$$
Y_{s}: \mathbb{I} \longrightarrow G L\left(F_{n}\right), \quad z \longmapsto X\left(e^{-i s} z\right) .
$$

Then $Y_{0}\left(e^{i \theta}\right)=X\left(e^{i \theta}\right)$ and $Y_{\theta}\left(e^{i \theta}\right)=X(1)$ so $X\left(e^{i \theta}\right)$ is homotopic to $X(1)$ in $G L\left(F_{n}\right)$. Thus $X\left(e^{i \theta}\right) \in G L_{E_{n}}\left(F_{n}\right)$ and $X \in \mathscr{C}\left(\mathbb{I}, G L_{E_{n}}\left(F_{n}\right)\right)$.

PROPOSITION 8.3.2 The following are equivalent for every $X \in F_{n}$.
a) $\widetilde{X} \in \operatorname{Lin}(n)$.
b) $z \in \mathbb{T} \backslash\{1\} \Longrightarrow \widetilde{X}(z) \in G L\left(F_{n}\right)$.
c) \widetilde{X} is a generalized idempotent of F_{n} ([4] Definition 11.2.8).
$a \Rightarrow b$ is trivial.
$b \Rightarrow a$. By Lemma 8.3.1, since $\widetilde{X}(1)=1_{E}, \tilde{X} \in \mathscr{C}\left(\mathbb{T}, G L_{E_{n}}\left(F_{n}\right)\right)$ so $\tilde{X} \in \operatorname{Lin}(n)$.
$b \Leftrightarrow c$. For $z \in \mathbb{T} \backslash\{1\}$,

$$
\widetilde{X}(z)=(z-1) X+1_{E}=(z-1)\left(X-\frac{1}{1-z} 1_{E}\right)
$$

Since

$$
\left\{\left.\frac{1}{1-z} \right\rvert\, z \in \mathbb{T} \backslash\{1\}\right\}=\left\{\alpha \in \mathbf{C} \left\lvert\, \operatorname{real}(\alpha)=\frac{1}{2}\right.\right\}
$$

b) holds iff $X-\alpha 1_{E}$ is invertible for every $\alpha \in \mathbf{C}$ with $\operatorname{real}(\alpha)=\frac{1}{2}$, which is equivalent to c).

LEMMA 8.3.3 For $z \in \mathbb{T}$,

$$
z A_{n}+B_{n} \sim_{h} A_{n}+z B_{n} \quad \text { in } U n E_{n} .
$$

We have

$$
\left(C_{n}+C_{n}^{*}\right)\left(z A_{n}+B_{n}\right)\left(C_{n}+C_{n}^{*}\right)=\left(z C_{n}+C_{n}^{*}\right)\left(C_{n}+C_{n}^{*}\right)=z B_{n}+A_{n}
$$

and the assertion follows from Proposition 6.2.5 a).

LEMMA 8.3.4 For $z \in \mathbb{T}$,

$$
z^{l} \prod_{i=1}^{m} A_{n+i}+\sum_{p=1}^{l} \prod_{i=1}^{m}(p, p)_{i} \sim_{h} \prod_{i=1}^{m} A_{n+i}+z \sum_{p=1}^{l} \prod_{i=1}^{m}(p, p)_{i} \quad \text { in } \quad U n E_{n+m} .
$$

Let $k \in \mathbb{N}_{l}$ and let $j \in \mathbb{N}_{m}$ with $|k|_{j}=1$. By Lemma 8.3.3,

$$
\begin{aligned}
& z^{l-k+1} \prod_{i=1}^{m} A_{n+i}+z \sum_{p=1}^{k-1} \prod_{i=1}^{m}(p, p)_{i}+\sum_{p=k}^{l} \prod_{i=1}^{m}(p, p)_{i}= \\
& =\left(z^{l-k} \prod_{i=1}^{m} A_{n+i}+\prod_{i=1}^{m}(k, k)_{i}\right)\left(z A_{n+j}+(k, k)_{j}\right)+ \\
& +z \sum_{p=1}^{k-1} \prod_{i=1}^{m}(p, p)_{i}+\sum_{p=k+1}^{l} \prod_{i=1}^{m}(p, p)_{i} \sim_{h} \\
& \sim_{h}\left(z^{l-k} \prod_{i=1}^{m} A_{n+i}+\prod_{i=1}^{m}(k, k)_{i}\right)\left(A_{n+j}+z(k, k)_{j}\right)+ \\
& +z \sum_{p=1}^{k-1} \prod_{i=1}^{m}(p, p)_{i}+\sum_{p=k+1}^{l} \prod_{i=1}^{m}(p, p)_{i}= \\
& =z^{l-k} \prod_{i=1}^{m} A_{n+i}+z \sum_{p=1}^{k} \prod_{i=1}^{m}(p, p)_{i}+\sum_{p=k+1}^{l} \prod_{i=1}^{m}(p, p)_{i}
\end{aligned}
$$

in $U n E_{n+m}$. The assertion follows now by induction on $k \in \mathbb{N}_{l}$.

LEMMA 8.3.5 Let $P, Q \in \operatorname{Pr} F_{n}$.
a) For every $z \in \mathbb{T}$,

$$
\overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}(z)=
$$

$$
=\widetilde{P}(z)\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) .
$$

b) If (with the identification of Lemma 8.1.1 d))

$$
\begin{gathered}
\widetilde{P}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \\
\sim_{h} \widetilde{Q}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \text { in } U n(\overbrace{S F})_{n+m},
\end{gathered}
$$

then

$$
\begin{gathered}
\overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}^{\sim} \sim_{h} \\
\sim_{h} Q\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)
\end{gathered} \text { in Un }(\overbrace{S F}^{\sim})_{n+m} .
$$

a) We have

$$
\begin{gathered}
\overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}(z)= \\
=z P\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)+\prod_{i=1}^{m} A_{n+i}+ \\
+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)-P\left(\prod_{i=1}^{m} A_{n+i}\right)-\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)= \\
=\widetilde{P}(z)\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) .
\end{gathered}
$$

b) Let

$$
[0,1] \longrightarrow U n(\overbrace{S F}^{\sim})_{n+m}, \quad s \longmapsto U_{s}
$$

be a continuous map with

$$
U_{0}=\widetilde{P}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)
$$

$$
U_{1}=\widetilde{Q}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) .
$$

Put $U_{s}^{\prime}:=U_{s}\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)$ for every $s \in[0,1]$. Then $s \mapsto U_{s}^{\prime}$ is a continuous path in $U n(\overbrace{S F}^{\sim})_{n+m}$ and by a),

$$
\begin{aligned}
U_{0}^{\prime} & =U_{0}\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)= \\
& =\widetilde{P}\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)= \\
& =\overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}^{\sim}(z), \\
U_{1}^{\prime} & =\overbrace{Q\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}^{\sim}(z) .
\end{aligned}
$$

PROPOSITION 8.3.6

a) If $U \in U n(\overbrace{S F}^{\sim})_{n}$ then there are $k, m \in \mathbb{N}$ and $P \in \operatorname{Pr} F_{n+m}$ such that (with the identification of Lemma 8.1.1 d))

$$
\left(z^{k} U\right)\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \widetilde{P} \quad \text { in } \quad U n(\overbrace{S F}^{\sim}) n+m .
$$

b) Let $P, Q \in \operatorname{Pr} F_{n}$ with $\widetilde{P} \sim_{h} \widetilde{Q}$ in $U n(\overbrace{S F}^{\sim}){ }_{n}$. Then there is an $m \in \mathbb{N}$ such that

$$
\begin{gathered}
P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \\
\sim_{h} Q\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \quad \text { in } \operatorname{Pr} F_{n+m} .
\end{gathered}
$$

a) By Proposition 8.2.2 a), there are $k, m \in \mathbb{N}, k<2^{m}$, and $X \in \operatorname{Pol}(n, l)$ such that $z^{k} U$ is homotopic to X in $\mathscr{C}\left(\mathbb{I}, G L_{E}\left(F_{n}\right)\right)$. By Proposition 8.2.6, there is a $Y \in \operatorname{Lin}(n+m)$ with

$$
X\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} Y \quad \text { in } \quad \operatorname{Pol}(n+m, 2 l+1)
$$

By [4] Lemma 11.2.12 (i), there is a $P \in \operatorname{Pr} F_{n+m}$ with $Y \sim_{h} \widetilde{P}$ in $\operatorname{Lin}(n+m)$. Thus

$$
\begin{aligned}
&\left(z^{k} U\right)\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \\
& \sim_{h} X\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} Y \sim_{h} \widetilde{P}
\end{aligned}
$$

in $\mathscr{C}\left(\mathbb{I}, G L_{E}\left(F_{n+m}\right)\right)$. By [4] Proposition 2.1.8 (iii) and the identification of Lemma 8.1.1 d),

$$
\left(z^{k} U\right)\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \widetilde{P} \quad \text { in } \quad U n(\overbrace{S F}^{\sim}){ }_{n+m} .
$$

b) By Proposition 8.2 .2 b), there are $k, m \in \mathbb{N}, k<2^{m}$, such that $z^{k} \widetilde{P} \sim_{h} z^{k} \widetilde{Q}$ in $\operatorname{Pol}(n, l)$. By Lemma 8.3.4 and Lemma 8.2.4 c),

$$
z^{l}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h}\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)
$$

in $U n E_{n+m}$. By Lemma 8.3.5 a),

$$
\begin{gathered}
\overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}(z)= \\
=\left(\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\right) \times \\
\times\left(\widetilde{P}(z)\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\right) \sim_{h} \\
\sim_{h}\left(z^{l}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\right)\left(\widetilde{P}(z)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\right)=
\end{gathered}
$$

$$
\begin{align*}
&= z^{l} \widetilde{P}(z)\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \\
& \sim_{h} z^{l} \widetilde{Q}(z)\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \\
& \overbrace{\sim}^{\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)} \tag{z}\\
& \sim_{h}(z)
\end{align*}
$$

in $\operatorname{Pol}(n+m, l)$. By Proposition 8.2.6,

$$
\begin{gathered}
=\overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}^{\left.\widetilde{P} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)=}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \\
\sim_{h} \mu(\overbrace{\left.\sim_{P}^{\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}\right)}^{\sim} \sim_{h} \\
\sim_{h} \mu(\overbrace{\overbrace{\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}^{\sim})}^{\sim} \sim_{h} \\
\\
\sim_{h} \widetilde{Q}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)
\end{gathered}
$$

in $\operatorname{Lin}(n+m)$. By Lemma 8.3.5 a),

$$
\begin{aligned}
& \overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}=\widetilde{P}\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \sim_{h} \\
& \sim_{h} \widetilde{Q}\left(\prod_{i=1}^{m} A_{n+i}\right)+z\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)=Q\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)
\end{aligned}
$$

in $\operatorname{Lin}(n+m)$. The assertion follows now from [4] Lemma 11.2.12 (ii).

THEOREM 8.3.7 The Bott map is bijective.

Step 1 Surjectivity

Let $a \in K_{1}(S F)$. There are $n \in \mathbb{N}$ and $U \in U n(\overbrace{S F}^{\sim}) n$ with $a=[U]_{1}$. By Proposition 8.3.6 a), there are $m, p \in \mathbb{N}, p \geq n$, and $P \in \operatorname{Pr} F_{p+m}$ such that

$$
\left(z^{l} U\right)\left(\prod_{i=1}^{m} A_{p+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right) \sim_{h} \widetilde{P} \quad \text { in } \quad U n(\overbrace{S F}^{\sim})_{p+m} .
$$

By Lemma 8.3.4 and Lemma 8.2.4 c),

$$
\begin{aligned}
& \overbrace{1_{E}-\prod_{i=1}^{m} A_{p+i}}=z\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right)+\left(\prod_{i=1}^{m} A_{p+i}\right) \sim_{h} \\
& \sim_{h}\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right)+z^{l}\left(\prod_{i=1}^{m} A_{p+i}\right) \quad \text { in } U n E_{p+m}
\end{aligned}
$$

so by Proposition 7.1.3 and Proposition 8.1.4,

$$
\begin{aligned}
\beta_{F}\left([P]_{0}-\right. & {\left.\left[1_{E}-\prod_{i=1}^{m} A_{p+i}\right]_{0}\right)=[\widetilde{P}]_{1}-[\overbrace{1_{E}-\prod_{i=1}^{m} A_{p+i}}^{\sim}]_{1}=} \\
= & {\left[\left(z^{l} U\right)\left(\prod_{i=1}^{m} A_{p+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right)\right]_{1} } \\
& -\left[\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right)+z^{l}\left(\prod_{i=1}^{m} A_{p+i}\right)\right]_{1}= \\
= & {\left[\left(\left(z^{l} U\right)\left(\prod_{i=1}^{m} A_{p+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right)\right) \times\right.} \\
\times & \left.\times\left(\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right)+z^{l}\left(\prod_{i=1}^{m} A_{p+i}\right)\right)^{*}\right]_{1}= \\
= & \left.U\left(\prod_{i=1}^{m} A_{p+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{p+i}\right)\right]_{1}=[U]_{1}=a .
\end{aligned}
$$

Step 2 Injectivity

Let $a \in K_{0}(F)$ with $\beta_{F} a=0$. By Proposition 6.1.5d), there are $P, Q \in \operatorname{Pr} F_{n}, P Q=0$, such that $a=[P]_{0}-[Q]_{0}$. Then $[\widetilde{P}]_{1}=[\widetilde{Q}]_{1}$, so $U:=\tilde{P} \tilde{Q}^{*} \in u n_{E_{n}} \overbrace{S F}$. Then

$$
\left.U=\left((z-1) P+1_{E}\right)\left((\bar{z}-1) Q+1_{E}\right)\right)=(z-1) P+(\bar{z}-1) Q+1_{E}, \quad U(1)=1_{E} .
$$

By Proposition 7.1.3, there is an $m \in \mathbb{N}$ such that

$$
V:=U\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)=\tau_{n+m, n}^{F} U \in U n_{E_{n+m}}(\overbrace{S F})_{n+m} .
$$

Then there is a $W \in U n E_{n+m}$ with $V \sim_{h} W$ in $U n(\overbrace{S F}^{\sim})_{n+m}$. By the above,

$$
W=W(1) \sim_{h} V(1)=1_{E}, \quad V \sim_{h} 1_{E} \quad \text { in } \quad U n(\overbrace{S F}^{\sim})_{n+m} .
$$

By Proposition 7.1.3,

$$
\begin{aligned}
& \widetilde{P}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)=\tau_{n+m, n}^{F} \tilde{P}=\left(\tau_{n+m, n}^{F} U\right)\left(\tau_{n+m, n}^{F} \tilde{Q}\right)= \\
= & V\left(\tau_{n+m, n}^{F} \tilde{Q}\right) \sim_{h} \widetilde{Q}\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \quad \text { in } \quad U n(\overbrace{S F})_{n+m},
\end{aligned}
$$

so by Proposition 8.3.5 b),

$$
\begin{aligned}
& \overbrace{P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)} \sim_{h} \\
& \sim_{h} \\
& \overbrace{Q\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)}^{\sim} \text { in } U n(\overbrace{S F}^{\sim})_{n+m} .
\end{aligned}
$$

Put

$$
P^{\prime}:=P\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)
$$

$$
Q^{\prime}:=Q\left(\prod_{i=1}^{m} A_{n+i}\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)
$$

By Proposition 8.3.6 b), there are $m^{\prime}, p^{\prime} \in \mathbb{N}$ such that

$$
\begin{gathered}
P^{\prime}\left(\prod_{j=1}^{m^{\prime}} A_{p^{\prime}+j}\right)+\left(1_{E}-\prod_{j=1}^{m^{\prime}} A_{p^{\prime}+i}\right) \sim_{h} \\
\sim_{h} Q^{\prime}\left(\prod_{j=1}^{m^{\prime}} A_{p^{\prime}+i}\right)+\left(1_{E}-\prod_{j=1}^{m^{\prime}} A_{p^{\prime}+i}\right) \quad \text { in } \operatorname{Pr} F_{p^{\prime}+m^{\prime}} .
\end{gathered}
$$

It follows successively

$$
\begin{gathered}
{\left[P^{\prime} \prod_{j=1}^{m^{\prime}} A_{p^{\prime}+j}\right]_{0}=\left[Q^{\prime} \prod_{j=1}^{m^{\prime}} A_{p^{\prime}+j}\right]_{0}} \\
{\left[P\left(\prod_{i=1}^{m} A_{n+i}\right)\left(\prod_{j=1}^{m^{\prime}} A_{p^{\prime}+j}\right)\right]_{0}=\left[Q\left(\prod_{i=1}^{m} A_{n+i}\right)\left(\prod_{j=1}^{m^{\prime}} A_{p^{\prime}+j}\right)\right]_{0}} \\
{[P]_{0}=[Q]_{0},}
\end{gathered} \quad a=[P]_{0}-[Q]_{0}=0 . ~ \$
$$

Remark. By Theorem 8.3.7 and Proposition 8.1 .5 c), the functor K_{0} is determined by the functor K_{1}.

COROLLARY 8.3.8 (The six-term sequence) Let

$$
0 \longrightarrow F \stackrel{\varphi}{\longrightarrow} G \xrightarrow{\psi} H \longrightarrow 0
$$

be an exact sequence in \mathfrak{M}_{E}.
a) The sequence

$$
0 \longrightarrow S F \xrightarrow{S \varphi} S G \xrightarrow{S \psi} S H \longrightarrow 0
$$

is exact. Let

$$
\delta_{2}: K_{1}(S H) \longrightarrow K_{0}(S F)
$$

be its associated index map (Corollary 7.2.3) and put (Proposition 8.1.5, Theorem 7.3.2)

$$
\delta_{0}:=\theta_{F}^{-1} \circ \delta_{2} \circ \beta_{H}: K_{0}(H) \longrightarrow K_{1}(F)
$$

We call δ_{0} and δ_{1} the six-term index maps. If we denote by $\bar{\delta}_{0}$ the corresponding six-term index map associated to the exact sequence in \mathfrak{M}_{E} (with obvious notation)

$$
0 \longrightarrow S F \xrightarrow{\varphi} C F \xrightarrow{\psi} F \longrightarrow 0
$$

then $\bar{\delta}_{0}=\beta_{F}$.
b) The six-term sequence

is exact.
c) If F (resp. H) is K-null (e.g. homotopic to $\{0\}$) then $K_{i}(G) \xrightarrow{K_{i}(\psi)} K_{i}(H)$ (resp. $\left.K_{i}(F) \xrightarrow{K_{i}(\varphi)} K_{i}(G)\right)$ is a group isomorphism for every $i \in\{0,1\}$.
d) If G is K-null (e.g. homotopic to $\{0\}$) then

$$
K_{0}(H) \xrightarrow{\delta_{0}} K_{1}(F), \quad K_{1}(H) \xrightarrow{\delta_{1}} K_{0}(F)
$$

are group isomorphisms.
e) If φ is K-null (e.g. factorizes through null) then the sequences

$$
\begin{aligned}
& 0 \longrightarrow K_{0}(G) \xrightarrow{K_{0}(\psi)} K_{0}(H) \xrightarrow{\delta_{0}} K_{1}(F) \longrightarrow 0, \\
& 0 \longrightarrow K_{1}(G) \xrightarrow{K_{1}(\psi)} K_{1}(H) \xrightarrow{\delta_{1}} K_{0}(F) \longrightarrow 0
\end{aligned}
$$

are exact.
f) If ψ is K-null (e.g. factorizes through null) then the sequences

$$
\begin{aligned}
& 0 \longrightarrow K_{0}(H) \xrightarrow{\delta_{0}} K_{1}(F) \xrightarrow{K_{1}(\varphi)} K_{1}(G) \longrightarrow 0, \\
& 0 \longrightarrow K_{1}(H) \xrightarrow{\delta_{1}} K_{0}(F) \xrightarrow{K_{0}(\varphi)} K_{0}(G) \longrightarrow 0
\end{aligned}
$$

are exact.
g) The six-term index maps of a split exact sequence are equal to 0 .
a) is easy to see.
b) By Theorem 8.3.7, β_{H} is an isomorphism. By Theorem 7.2.9, the sequences

$$
\begin{gathered}
K_{1}(F) \xrightarrow{K_{1}(\varphi)} K_{1}(G) \xrightarrow{K_{1}(\psi)} K_{1}(H) \xrightarrow{\delta_{1}} K_{0}(F) \xrightarrow{K_{0}(\varphi)} K_{0}(G) \xrightarrow{K_{0}(\psi)} K_{0}(H), \\
K_{1}(S G) \xrightarrow{K_{1}(S \psi)} K_{1}(S H) \xrightarrow{\delta_{2}} K_{0}(S F) \xrightarrow{K_{0}(S \varphi)} K_{0}(S G)
\end{gathered}
$$

are exact. By Proposition 8.1 .5 c) and Proposition 7.3.8, the diagrams

are commutative. It follows

$$
\delta_{0} \circ K_{0}(\psi)=\theta_{F}^{-1} \circ \delta_{2} \circ \beta_{H} \circ K_{0}(\psi)=\theta_{F}^{-1} \circ \delta_{2} \circ K_{1}(S \psi) \circ \beta_{G}=0,
$$

$\operatorname{Im} K_{0}(\psi) \subset \operatorname{Ker} \delta_{0}$. Let $a \in \operatorname{Ker} \delta_{0}$. Then $\delta_{2} \beta_{H} a=\theta_{F} \delta_{0} a=0$, so there is a $b \in K_{1}(S G)$ with $K_{1}(S \psi) b=\beta_{H} a$. It follows

$$
a=\beta_{H}^{-1} K_{1}(S \psi) b=K_{0}(\psi) \beta_{G}^{-1} b \in \operatorname{Im} K_{0}(\psi), \quad \operatorname{Ker} \delta_{0} \subset \operatorname{Im} K_{0}(\psi)
$$

c) The assertion follows immediately from b). By Proposition 7.1.8 e), a null-homotopic $E-\mathrm{C}^{*}$-algebra is K-null.
d) The proof is similar to the proof of c).
e) and f) follow from b) and Proposition 7.1.8 f).
g) By Proposition 6.2.9 and Corollary 7.3.9 (with the notation of b)) $K_{0}(\varphi)$ and $K_{1}(\varphi)$ are injective and $K_{0}(\psi)$ and $K_{1}(\psi)$ are surjective and the assertion follows from b).

COROLLARY 8.3.9 Let us consider the following commutative diagram in \mathfrak{M}_{E}

where the horizontal lines are exact.
a) (Commutativity of the six-term index maps) The diagrams (with obvious notation)

are commutative. If $K_{i}(F)=K_{i}\left(F^{\prime}\right), K_{i}(H)=K_{i}\left(H^{\prime}\right)$, and $K_{i}(\beta)$ and $K_{i}(\gamma)$ are the identity maps for all $i \in\{0,1\}$ then $\delta_{i}=\delta_{i}^{\prime}$ for all $i \in\{0,1\}$.
b) The diagram (with obvious notation)

is commutative.
a) The commutativity of the first diagram was proved in Proposition 7.2.4. By Proposition 7.3.8, the diagram

is commutative. By Proposition 7.2.4, the diagram

$$
\begin{array}{ccc}
K_{1}(S H) & \xrightarrow{\delta_{2}} & K_{0}(S F) \\
K_{1}(S \beta) \downarrow & & \\
& & K_{0}(S \gamma) \\
K_{1}\left(S H^{\prime}\right) \xrightarrow[\delta_{2}^{\prime}]{ } & K_{0}\left(S F^{\prime}\right)
\end{array}
$$

is commutative, where δ_{2} and δ_{2}^{\prime} are defined in Corollary 8.3.8 a). By Proposition 8.1.5 c), the diagram

$$
\begin{array}{ll}
K_{0}(H) \xrightarrow{K_{0}(\beta)} & K_{0}\left(H^{\prime}\right) \\
\beta_{H} \downarrow & \\
K_{1}(S H) \xrightarrow[K_{1}(S \beta)]{ } & \downarrow_{1}\left(S H^{\prime}\right)
\end{array}
$$

is commutative. It follows, by the definition of δ_{0} (Corollary 8.3.8 a)),

$$
\begin{aligned}
& K_{1}(\gamma) \circ \delta_{0}=K_{1}(\gamma) \circ \theta_{F}^{-1} \circ \delta_{2} \circ \beta_{H}=\theta_{F^{\prime}}^{-1} \circ K_{0}(S \gamma) \circ \delta_{2} \circ \beta_{H}= \\
= & \theta_{F^{\prime}}^{-1} \circ \delta_{2}^{\prime} \circ K_{1}(S \beta) \circ \beta_{H}=\theta_{F^{\prime}}^{-1} \circ \delta_{2}^{\prime} \circ \beta_{H^{\prime}} \circ K_{0}(\beta)=\delta_{0}^{\prime} \circ K_{0}(\beta)
\end{aligned}
$$

b) follows from a) and Corollary 8.3.8 b).

Chapter 9

Variation of the Parameters

Throughout this chapter we endow $\{0,1\}$ with the structure of o group by identifying it with \mathbf{Z}_{2}.

9.1 Changing E

Let E^{\prime} be a commutative unital C*-algebra, $\phi: E \longrightarrow E^{\prime}$ a unital C*-homomorphism, and

$$
f^{\prime}: T \times T \longrightarrow U n E^{\prime}, \quad(s, t) \longmapsto \phi f(s, t) .
$$

Then $f^{\prime} \in \mathscr{F}\left(T, E^{\prime}\right)$ and we may define E_{n}^{\prime} with respect to f^{\prime} for every $n \in \mathbb{N}$ like in Definition 5.0.2.

Let $n \in \mathbb{N}$ and put

$$
C_{n}^{\prime}:=\sum_{t \in T_{n}}\left(\left(\phi C_{n, t}\right) \otimes i d_{K}\right) V_{t}^{f^{\prime}} \quad\left(\in E_{n}^{\prime}\right)
$$

For every $s \in T_{n-1}$,

$$
\begin{aligned}
& \sum_{t \in T_{n}}\left(\left(f\left(s^{-1} t, t\right) C_{n, t s^{-1}}\right) \otimes i d_{K}\right) V_{t}^{f}=V_{s}^{f} C_{n}= \\
& =C_{n} V_{s}^{f}=\sum_{t \in T_{n}}\left(\left(f\left(t s^{-1}, s\right) C_{n, t s^{-1}}\right) \otimes i d_{K}\right) V_{t}^{f}
\end{aligned}
$$

so by [2] Theorem 2.1.9 a),

$$
f\left(s^{-1} t, t\right) C_{n, s^{-1} t}=f\left(t s^{-1}, s\right) C_{n, t s^{-1}}
$$

for every $t \in T_{n}$. It follows

$$
f^{\prime}\left(s^{-1} t, t\right) C_{n, s^{-1} t}^{\prime}=f^{\prime}\left(t s^{-1}, s\right) C_{n, t s^{-1}}^{\prime}, \quad V_{s}^{f^{\prime}} C_{n}^{\prime}=C_{n}^{\prime} V_{s}^{f^{\prime}}, \quad C_{n}^{\prime} \in\left(E_{n-1}^{\prime}\right)^{c}
$$

Thus $\left(C_{n}^{\prime}\right)_{n \in \mathbb{N}}$ satisfies the conditions of Axiom 5.0.3 and we may construct a K-theory with respect to $T, E^{\prime}, f^{\prime}$, and $\left(C_{n}^{\prime}\right)_{n \in \mathbb{N}}$, which we shall denote by K^{\prime}.

Let F be an E^{\prime}-C*-algebra. We denote by \bar{F} or by $\Phi(F)$ the E-C*-algebra obtained by endowing the C^{*}-algebra F with the exterior multiplication

$$
E \times F \longrightarrow F, \quad(\alpha, x) \longmapsto(\phi \alpha) x
$$

If $F \stackrel{\varphi}{\longrightarrow} G$ is a morphism in $\mathfrak{M}_{E^{\prime}}$, then $\bar{F} \xrightarrow{\bar{\varphi}} \bar{G}$ is a morphism in \mathfrak{M}_{E}, in a natural way.
Let F be an E^{\prime}-C*-algebra and $n \in \mathbb{N}$. We put for every

$$
X=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, x_{t}\right) \otimes i d_{K}\right) V_{t}^{f} \in \check{\bar{F}}_{n}
$$

Chapter 9 Variation of the Parameters

$$
X^{\prime}:=\sum_{t \in T_{n}}\left(\left(\phi \alpha_{t}, x_{t}\right) \otimes i d_{K}\right) V_{t}^{f^{\prime}} \quad\left(\in \check{F}_{n}\right)
$$

and set

$$
\phi_{F, n}: \check{\bar{F}}_{n} \longrightarrow \check{F}_{n}, \quad X \longmapsto X^{\prime} .
$$

Then $\phi_{F, n}$ is a unital C^{*}-homomorphism (surjective or injective if ϕ is so ([2] Theorem 2.1.9 a))) such that $\phi_{F, n}\left(U n_{E_{n}} \check{\bar{F}}_{n}\right) \subset U n_{E_{n}^{\prime}} \check{F}_{n}$ and $\phi_{F, n} \circ \sigma_{n}^{\bar{F}}=\sigma_{n}^{F} \circ \phi_{F, n}$. Thus we get for every $i \in\{0,1\}$ an associated group homomorphism $\Phi_{i, F}: K_{i}(\bar{F}) \longrightarrow K_{i}^{\prime}(F)$.

Let $E^{\prime \prime}$ be a unital commutative C^{*}-algebra, $\phi^{\prime}: E^{\prime} \longrightarrow E^{\prime \prime}$ a unital C^{*}-homomorphism, and $\phi^{\prime \prime}:=\phi^{\prime} \circ \phi$. Then we may do similar constructions for ϕ^{\prime} and $\phi^{\prime \prime}$ as we have done for ϕ. If F is an $E^{\prime \prime}-\mathrm{C}^{*}$-algebra, $\Phi^{\prime}(F)$ and $\Phi^{\prime \prime}(F)$ the corresponding E^{\prime} - C^{*}-algebra and E-C ${ }^{*}$-algebra, respectively, then $\Phi^{\prime \prime}(F)=\Phi\left(\Phi^{\prime}(F)\right)$. If Φ_{i}^{\prime} and $\Phi_{i}^{\prime \prime}$ are the equivalents of Φ_{i} with respect to ϕ^{\prime} and $\phi^{\prime \prime}$, respectively, then $\Phi_{i, F}^{\prime \prime}=\Phi_{i, F}^{\prime} \circ \Phi_{i, \Phi^{\prime}(F)}$ for every $i \in\{0,1\}$. If $E^{\prime \prime}=E$ and $\phi^{\prime \prime}=i d_{E}$ then $C_{n}^{\prime \prime}=C_{n}$ for every $n \in \mathbb{N}$ and for every E-C*-algebra F, $\Phi^{\prime \prime}(F)=F$ and $\Phi_{i, F}^{\prime \prime}=i d_{K_{i}(F)}$ for every $i \in\{0,1\}$. If in addition $\phi^{\prime \prime \prime}:=\phi \circ \phi^{\prime}=i d_{E^{\prime}}$ then $C_{n}^{\prime \prime \prime}=C_{n}^{\prime}$ for every $n \in \mathbb{N}$ and for every E^{\prime} - C^{*}-algebra $F, \Phi^{\prime}(\Phi(F))=F$ and $\Phi_{i, \Phi(F)}^{\prime}{ }^{\circ}$ $\Phi_{i, F}=i d_{K_{i}^{\prime}(F)}$ for every $i \in\{0,1\}$, i.e. the K-theory and the K^{\prime}-theory "coincide".

Remark. Let $P \in \operatorname{Pr} E, 0<P<1_{E}$, and put

$$
P f: T \times T \longrightarrow U n P E, \quad(s, t) \longmapsto P f(s, t) .
$$

Then $P f \in \mathscr{F}(T, P E)$ and we denote by $P K$ the K-theory with respect to $T, P E, P f$, and $\left(P C_{n}\right)_{n \in \mathbb{N}}$. Then for every E - C^{*}-algebra F and $i \in\{0,1\}$

$$
K_{i}(F) \approx\left((P K)_{i}(P F)\right) \times\left(\left(\left(1_{E}-P\right) K\right)_{i}\left(\left(1_{E}-P\right) F\right)\right) .
$$

If $F \xrightarrow{\varphi} G$ is a morphism in \mathfrak{M}_{E} then

$$
P \varphi: P F \longrightarrow P G, \quad P x \longmapsto P \varphi x
$$

is a morphism in $\mathfrak{M}_{P E}$ and

$$
K_{i}(\varphi)=(P K)_{i}(P \varphi) \times\left(\left(1_{E}-P\right) K\right)_{i}\left(\left(1_{E}-P\right) \varphi\right)
$$

for every $i \in\{0,1\}$.

PROPOSITION 9.1.1 We use the above notation and assume $i \in\{0,1\}$.
a) If $F \xrightarrow{\varphi} G$ is a morphism in $\mathfrak{M}_{E^{\prime}}$ then the diagram

$$
\begin{array}{cc}
K_{i}(\bar{F}) \xrightarrow{K_{i}(\bar{\varphi})} & K_{i}(\bar{G}) \\
\Phi_{i, F} \downarrow & \\
& \downarrow \Phi_{i, G} \\
K_{i}^{\prime}(F) \xrightarrow[K_{i}^{\prime}(\varphi)]{\longrightarrow} & K_{i}^{\prime}(G)
\end{array}
$$

is commutative.
b) For every $E^{\prime}-C^{*}$-algebra F the diagram

is commutative, where β_{F}^{\prime} denotes the Bott map in the K^{\prime}-theory.
c) If

$$
0 \longrightarrow F \xrightarrow{\varphi} G \xrightarrow{\psi} H \longrightarrow 0
$$

is an exact sequence in $\mathfrak{M}_{E^{\prime}}$ then the diagram

is commutative, where δ_{1}^{\prime} denotes the index maps associated to the above exact sequences in the K^{\prime}-theory.
a) For every $n \in \mathbb{N}$ and

$$
\begin{gathered}
X=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, x_{t}\right) \otimes i d_{K}\right) V_{t}^{f} \in \check{\bar{F}}_{n}, \\
\check{\varphi}_{n} \phi_{F, n} X=\sum_{t \in T_{n}}\left(\left(\left(\phi \alpha_{t}\right), \varphi x_{t}\right) \otimes i d_{K}\right) V_{t}^{f^{\prime}}=\phi_{G, n} \check{\bar{\varphi}}_{n} X .
\end{gathered}
$$

b) For every $n \in \mathbb{N}$ and $P \in \operatorname{Pr} \check{\bar{F}}_{n}$,

$$
\phi_{S F, n} \widetilde{P}=(\widetilde{P})^{\prime}=\widetilde{P^{\prime}}=\widetilde{\phi_{F, n} P}
$$

Chapter 9 Variation of the Parameters
c) Let $n \in \mathbb{N}$ and $U \in U n \check{\bar{H}}_{n-1}$. By Proposition 7.2.1 a), there are $V \in U n \check{\bar{G}}_{n}$ and $P \in \operatorname{Pr} \check{\bar{F}}_{n}$ such that

$$
\check{\bar{\psi}}_{n} V=A_{n} U+B_{n} U^{*}, \quad \check{\bar{\varphi}}_{n} P=V A_{n} V^{*} .
$$

Then

$$
\begin{gathered}
\check{\psi}_{n} \phi_{G, n} V=\phi_{H, n} \check{\bar{\psi}}_{n} V=A_{n}^{\prime}\left(\phi_{H, n-1} U\right)+B_{n}^{\prime}\left(\phi_{H, n-1} U\right)^{*}, \\
\check{\varphi}_{n} \phi_{F, n} P=\phi_{G, n} \check{\bar{\varphi}}_{n} P=\left(\phi_{G, n} V\right) A_{n}^{\prime}\left(\phi_{G, n} V\right)^{*}
\end{gathered}
$$

so by Corollary 7.2.3,

$$
\begin{gathered}
\delta_{1}^{\prime} \Phi_{1, H}[U]_{1}=\delta_{1}^{\prime}\left[\phi_{H, n-1} U\right]_{1}=\left[\phi_{F, n} P\right]_{0}=\Phi_{0, F}[P]_{0}=\Phi_{0, F} \delta_{1}[U]_{1} \\
\delta_{1}^{\prime} \circ \Phi_{1, H}=\Phi_{0, F} \circ \delta_{1} .
\end{gathered}
$$

LEMMA 9.1.2 Let F, G be C^{*}-algebras, $\varphi: F \longrightarrow G$ a surjective C^{*}-homomorphism, and

$$
\psi: \mathscr{C}([0,1], F) \longrightarrow \mathscr{C}([0,1], G), \quad x \longmapsto \varphi \circ x .
$$

a) ψ is surjective.
b) Assume F unital and let $v \in U n \mathscr{C}([0,1], G)$ such that there is an $x \in U n F$ with $\varphi x=v(0)$. Then there is $a u \in U n \mathscr{C}([0,1], F)$ with $\psi u=v$ and $u(0)=x$.
a) Let y be an element of $\mathscr{C}([0,1], G)$ which is piecewise linear, i.e. there is a family

$$
0=s_{1}<s_{2}<\cdots<s_{n-1}<s_{n}=1
$$

such that for every $i \in \mathbb{N}_{\mathrm{n}-1}$ and $t \in[0,1]$,

$$
y\left((1-t) s_{i}+t s_{i+1}\right)=(1-t) y\left(s_{i}\right)+t y\left(s_{i+1}\right) .
$$

Since φ is surjective, there is a family $\left(x_{i}\right)_{i \in \mathbb{N}_{\mathrm{n}}}$ in F with $\varphi x_{i}=y\left(s_{i}\right)$ for every $i \in \mathbb{N}_{\mathrm{n}}$. Define $x:[0,1] \longrightarrow F$ by putting

$$
x\left((1-t) s_{i}+t s_{i+1}\right):=(1-t) x_{i}+t x_{i+1}
$$

for every $i \in \mathbb{N}_{\mathrm{n}-1}$ and $t \in[0,1]$. For $i \in \mathbb{N}_{\mathrm{n}-1}$ and $t \in[0,1]$,

$$
(\psi x)\left((1-t) s_{i}+t s_{i+1}\right)=\varphi\left((1-t) x_{i}+t x_{i+1}\right)=
$$

$$
=(1-t) y\left(s_{i}\right)+t y\left(s_{i+1}\right)=y\left((1-t) s_{i}+t s_{i+1}\right)
$$

so $\psi x=y, y \in \operatorname{Im} \psi$. Since the set of elements of $\mathscr{C}([0,1], G)$, which are piecewise linear, is dense in $\mathscr{C}([0,1], G)$ and $\operatorname{Im} \psi$ is closed (as C^{*}-homomorphism), ψ is surjective.
b) Let

$$
w:[0,1] \longrightarrow U n G, \quad s \longmapsto v(0)^{*} v(s) .
$$

Then $w \in U n \mathscr{C}([0,1], G)$ and $w(0)=1_{G}$. Put

$$
w_{t}:[0,1] \longrightarrow U n G, \quad s \longmapsto w(s t)
$$

for every $t \in[0,1]$. Then

$$
[0,1] \longrightarrow U n \mathscr{C}([0,1], G), \quad t \longmapsto w_{t}
$$

is a continuous path with $w_{1}=w$ and $w_{0}=1_{\mathscr{C}([0,1], G)}$. Thus

$$
w \in U n_{0} \mathscr{C}([0,1], G) .
$$

By a), ψ is surjective, so by [4] Lemma 2.1.7 (i), there is a $u^{\prime} \in U n \mathscr{C}([0,1], F)$ with $\psi u^{\prime}=w$. Put

$$
u:[0,1] \longrightarrow U n F, \quad s \longmapsto x u^{\prime}(0)^{*} u^{\prime}(s) .
$$

Then $u \in U n \mathscr{C}([0,1], F), u(0)=x$, and

$$
\begin{gathered}
(\psi u)(s)=\varphi(u(s))=\varphi\left(x u^{\prime}(0)^{*} u^{\prime}(s)\right)=\varphi(x)\left(\left(\psi u^{\prime}\right)(0)\right)^{*}\left(\left(\psi u^{\prime}\right)(s)\right)= \\
=v(0) w(0)^{*} w(s)=v(0) 1_{G} v(0)^{*} v(s)=v(s)
\end{gathered}
$$

for every $s \in[0,1]$, i.e. $\psi u=v$.

THEOREM 9.1.3 $\Phi_{i, F}$ is a group isomorphism for every $i \in\{0,1\}$ and for every $E^{\prime}-C^{*}$ algebra F.

By Proposition 9.1.1 b), $\Phi_{0, F}=\left(\beta_{F}^{\prime}\right)^{-1} \circ \Phi_{1, S F} \circ \beta_{\bar{F}}$, so it suffices to prove the assertion for $\Phi_{1, F}$ only. Let $n \in \mathbb{N}$ and $U \in U n \check{F}_{n}$. Put $V:=U\left(\sigma_{n}^{F} U\right)^{*} \sim_{1} U$. Since $\sigma_{n}^{F} V=1_{E^{\prime}}, V$ has the form

$$
V=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, x_{t}\right) \otimes i d_{K}\right) V_{t}^{f^{\prime}}
$$

Chapter 9 Variation of the Parameters
with $\alpha_{t}=\delta_{1, t} 1_{E^{\prime}}$ and $x_{t} \in F$ for every $t \in T_{n}$. If we put

$$
W:=\sum_{t \in T_{n}}\left(\left(\delta_{1, t} 1_{E}, x_{t}\right) \otimes i d_{K}\right) V_{t}^{f}
$$

then $\phi_{F, n} W=V$ and we get $\Phi_{1, F}[W]_{1}=[V]_{1}=[U]_{1}$, so $\Phi_{1, F}$ is surjective. Thus we have to prove the injectivity of $\Phi_{1, F}$ only.

Let $a \in \operatorname{Ker} \Phi_{1, F}$. We have to prove $a=0$. There are $n \in \mathbb{N}$ and

$$
U:=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, x_{t}\right) \otimes i d_{K}\right) V_{t}^{f} \in U n \check{F}_{n}
$$

with $a=[U]_{1}$, where $\left(\alpha_{t}, x_{t}\right) \in \check{F}$ for every $t \in T_{n}$. Since $\left[U^{\prime}\right]_{1}=\Phi_{1, F}[U]_{1}=0$, by Proposition 7.1.3, there is an $m \in \mathbb{N}$ such that

$$
U_{0}^{\prime}:=\left(\prod_{i=1}^{m} A_{n+i}^{\prime}\right) U^{\prime}+\left(1_{E^{\prime}}-\prod_{i=1}^{m} A_{n+i}^{\prime}\right)
$$

is homotopic in $U n \check{F}_{n+m}$ to a $U_{1}^{\prime} \in U n E_{n+m}^{\prime}\left(\subset U n \check{F}_{n+m}\right)$. Thus there is a continuous path

$$
U^{\prime}:[0,1] \longrightarrow U n \check{F}_{n+m}, \quad s \longmapsto U_{s}^{\prime} .
$$

Case 1ϕ is injective

Put

$$
W_{s}^{\prime}:=U_{s}^{\prime} \sigma_{n+m}^{F}\left(U_{s}^{\prime *} U_{0}^{\prime}\right)\left(\in U n \check{F}_{n+m}\right)
$$

for every $s \in[0,1]$. Then

$$
\sigma_{n+m}^{F} W_{s}^{\prime}=\sigma_{n+m}^{F} U_{0}^{\prime}=\phi_{F, n+m}\left(\left(\prod_{i=1}^{m} A_{n+i}\right)\left(\sigma_{n}^{\bar{F}} U\right)+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\right)
$$

for every $s \in[0,1]$. If we put

$$
W_{s}^{\prime}=: \sum_{t \in T_{n+m}}\left(\left(\beta_{s, t}, y_{s, t}\right) \otimes i d_{K}\right) V_{t}^{f^{\prime}}
$$

where $\left(\beta_{s, t}, y_{s, t}\right) \in \check{F}$ for all $s \in[0,1]$ and $t \in T_{n}$, then

$$
\sum_{t \in T_{n+m}}\left(\left(\beta_{s, t}, 0\right) \otimes i d_{K}\right) V_{t}^{f^{\prime}}=\sigma_{n+m}^{F} W_{s}^{\prime}=
$$

$$
=\phi_{F, n+m}\left(\left(\prod_{i=1}^{m} A_{n+i}\right) \sum_{t \in T_{n}}\left(\left(\alpha_{t}, 0\right) \otimes i d_{K}\right) V_{t}^{f}+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\right)
$$

and so by [2] Theorem 2.1.9 a), there is a (unique) family $\left(\gamma_{t}\right)_{t \in T_{n+m}}$ in E with $\beta_{s, t}=\phi \gamma_{t}$ for every $s \in[0,1]$ and $t \in T_{n+m}$. Since ϕ is injective, ϕ_{n+m} is also injective and $\phi_{n+m}\left(\check{\bar{F}}_{n+m}\right)$ may be identified with a unital C*-subalgebra of \check{F}_{n+m}. Thus

$$
W:[0,1] \longrightarrow U n \check{\bar{F}}_{n+m}, \quad s \longmapsto \sum_{t \in T_{n+m}}\left(\left(\gamma_{t}, y_{s, t}\right) \otimes i d_{K}\right) V_{t}^{f}
$$

is a continuous path in $U n \check{\bar{F}}_{n+m}$ with $\phi_{F, n+m} W_{s}=W_{s}^{\prime}$ for every $s \in[0,1]$. It follows

$$
\begin{gathered}
\phi_{F, n+m} W_{0}=W_{0}^{\prime}=U_{0}^{\prime}=\phi_{F,, n+m}\left(\left(\prod_{i=1}^{m} A_{n+i}\right) U+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\right), \\
\phi_{F, n+m} W_{1}=W_{1}^{\prime}=U_{1}^{\prime} \sigma_{n+m}^{F}\left(U_{1}^{\prime *} U_{0}^{\prime}\right)=\sigma_{n+m}^{F} U_{0}^{\prime} \in \phi_{F, n+m}\left(U n E_{n+m}^{\prime}\right) .
\end{gathered}
$$

Since ϕ is injective, $\phi_{F, n+m}$ is also injective and we get

$$
\begin{gathered}
\left(\prod_{i=1}^{m} A_{n+i}\right) U+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)=W_{0} \\
\left(\prod_{i=1}^{m} A_{n+i}\right) U+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right) \in U n_{E_{n+m}} \check{\bar{F}}_{n+m}, \quad g=[U]_{1}=0 .
\end{gathered}
$$

Case 2ϕ is surjective

We put

$$
\bar{U}_{0}:=\left(\prod_{i=1}^{m} A_{n+i}\right) U+\left(1_{E}-\prod_{i=1}^{m} A_{n+i}\right)\left(\in U n \check{\bar{F}}_{n+m}\right) .
$$

Since ϕ is surjective, $\phi_{F, n+m}$ is also surjective ([2] Theorem 2.1.9 a)). Since

$$
\phi_{F, n+m} \bar{U}_{0}=U_{0}^{\prime}
$$

it follows from Lemma 9.1.2 b), that there is a continuous path

$$
[0,1] \longrightarrow U n \check{\bar{F}}_{n+m}, \quad s \longmapsto U_{s}
$$

with $\phi_{F, n+m} U_{s}=U_{s}^{\prime}$ for every $s \in[0,1]$ and $U_{0}=\bar{U}_{0}$. Since $\phi_{F, n+m} U_{1}=U_{1}^{\prime} \in U n E_{n+m}^{\prime}$, we have $\bar{U}_{0} \in U n_{E_{n+m}} \check{\bar{F}}_{n+m}$ and $g=[U]_{1}=\left[\bar{U}_{0}\right]_{1}=0$.

Case 3ϕ is arbitrary

There are a unital commutative C^{*}-algebra $E^{\prime \prime}$ and a unital C^{*}-homomor-phisms ϕ^{\prime} : $E \longrightarrow E^{\prime \prime}$ and $\phi^{\prime \prime}: E^{\prime \prime} \longrightarrow E^{\prime}$ such that ϕ^{\prime} is surjective, $\phi^{\prime \prime}$ is injective, and $\phi=\phi^{\prime \prime} \circ \phi^{\prime}$ and the assertion follows from the first two cases and the considerations from the begin of the section.

COROLLARY 9.1.4 Let $E^{\prime}, E^{\prime \prime}$ be unital commutative C^{*}-algebras such that $E=E^{\prime} \times$ $E^{\prime \prime}$ and

$$
\begin{aligned}
\phi^{\prime}: E \longrightarrow E^{\prime}, & \left(x^{\prime}, x^{\prime \prime}\right) \longmapsto x^{\prime} \\
\phi^{\prime \prime}: E \longrightarrow E^{\prime \prime}, & \left(x^{\prime}, x^{\prime \prime}\right) \longmapsto x^{\prime \prime}
\end{aligned}
$$

If F^{\prime} is an E^{\prime} - C^{*}-algebra and $F^{\prime \prime}$ is an $E^{\prime \prime}$ - C^{*}-algebra then the map (with obvious notation)

$$
K_{i}\left(\Phi^{\prime}\left(F^{\prime}\right) \times \Phi^{\prime \prime}\left(F^{\prime \prime}\right)\right) \longrightarrow K_{i}^{\prime}\left(F^{\prime}\right) \times K_{i}^{\prime \prime}\left(F^{\prime \prime}\right), \quad a \longmapsto\left(\Phi_{i, F^{\prime}}^{\prime} \times \Phi_{i, F^{\prime \prime}}^{\prime \prime}\right)\left(\varphi_{i} a\right)
$$

is a group isomorphism for every $i \in\{0,1\}$, where

$$
\varphi_{i}: K_{i}\left(\Phi^{\prime}\left(F^{\prime}\right) \times \Phi^{\prime \prime}\left(F^{\prime \prime}\right)\right) \longrightarrow K_{i}\left(\Phi^{\prime}\left(F^{\prime}\right)\right) \times K_{i}\left(\Phi^{\prime \prime}\left(F^{\prime \prime}\right)\right)
$$

is the canonical group isomorphism (Product Theorem (Corollary 6.2.10 b), Proposition 7.3.3 b)).

COROLLARY 9.1.5 If $f(s, t) \in \mathbf{C}$ for all $s, t \in T$ and $C_{n} \in \mathbf{C}_{n}$ for all $n \in \mathbb{N}$ and if $K^{\mathbf{C}}$ denotes the K-theory with respect to T, \mathbf{C}, f, and $\left(C_{n}\right)_{n \in \mathbb{N}}$ then $K_{i}(E)=K_{i}^{\mathbf{C}}(\mathscr{C}(\Omega, \mathbf{C}))$ for all $i \in\{0,1\}$, where Ω denotes the spectrum of E.

PROPOSITION 9.1.6 If F is an E^{\prime} - C^{*}-algebra then the map

$$
\varphi: E \times \Phi(F) \longrightarrow \overbrace{\Phi(F)}^{\mathfrak{C}_{2}}, \quad(\alpha, x) \longmapsto(\alpha, x-\phi \alpha)
$$

is an $E-C^{*}$-isomorphism.

For $(\alpha, x),(\beta, y) \in E \times \Phi(F)$ and $\gamma \in E$,

$$
\varphi(\gamma(\alpha, x))=\varphi(\gamma \alpha,(\phi \gamma) x)=(\gamma \alpha,(\phi \gamma) x-\phi(\gamma \alpha))=
$$

$$
\begin{gathered}
=(\gamma, 0)(\alpha, x-\phi \alpha)=(\gamma, 0) \varphi(\alpha, x), \\
\varphi(\alpha, x)^{*}=\varphi\left(\alpha^{*}, x^{*}\right)=\left(\alpha^{*}, x^{*}-\phi \alpha^{*}\right)=(\varphi(\alpha, x))^{*} \\
\varphi(\alpha, x) \varphi(\beta, y)=(\alpha, x-\phi \alpha)(\beta, y-\phi \beta)= \\
=(\alpha \beta,(\phi \alpha) y-\phi(\alpha \beta)+(\phi \beta) x-\phi(\alpha \beta)+x y-(\phi \beta) x-(\phi \alpha) y+\phi(\alpha \beta))= \\
=(\alpha \beta, x y-\phi(\alpha \beta))=\varphi(\alpha \beta, x y)=\varphi((\alpha, x)(\beta, y)),
\end{gathered}
$$

so φ is an $E-\mathrm{C}^{*}$-homomorphism. The other assertions are easy to see.

9.2 Changing f

In all Propositions and Corollaries of this section we use the notation and assumptions of Example 5.0.4 and F denotes a C^{*}-algebra.

LEMMA 9.2.1 For every $n \in \mathbb{N}$ there is an $\varepsilon_{n}>0$ such that for every $m \in \mathbb{N}, m \leq n$, and $\alpha \in U n \mathbf{C},|\alpha-1|<\varepsilon_{n}$, there is a unique $\beta_{\alpha} \in U n \mathbf{C},\left|\beta_{\alpha}-1\right|<\frac{1}{n}$, with $\beta_{\alpha}^{m}=\alpha$; moreover the map $\alpha \mapsto \beta_{\alpha}$ is continuous.

If β, γ are distinct elements of $U n \mathbf{C}$ and $\beta^{m}=\gamma^{m}$ then

$$
|\beta-\gamma| \geq\left|1-e^{\frac{2 \pi i}{m}}\right|>\frac{1}{m} \geq \frac{1}{n}
$$

and the assertion follows from the continuity of the corresponding branch of the map $\alpha \mapsto \sqrt[m]{\alpha}$.

DEFINITION 9.2.2 For every finite group S we endow $\mathscr{F}(S, \mathbf{C})$ with the metric

$$
d_{S}(g, h):=\sup \{|g(s, t)-h(s, t)| \mid s, t \in S\}
$$

for all $g, h \in \mathscr{F}(S, \mathbf{C})$.

Remark. $\mathscr{F}(S, \mathbf{C})$ endowed with the above metric is compact.

Chapter 9 Variation of the Parameters

DEFINITION 9.2.3 We put

$$
\Lambda(T, E):=\left\{\lambda: T \longrightarrow U n E \mid \lambda(1)=1_{E}\right\}
$$

and

$$
\delta \lambda: T \times T \longrightarrow U n E, \quad(s, t) \longmapsto \lambda(s) \lambda(t) \lambda(s t)^{*}
$$

for every $\lambda \in \Lambda(T, E)$.

LEMMA 9.2.4 Let S be a finite group and Ω a compact space.
a) $\{\delta \lambda \mid \lambda \in \Lambda(S, \mathbf{C})\}$ is an open set of $\mathscr{F}(S, \mathbf{C})$.
b) For every $\varepsilon^{\prime}>0$ there is an $\varepsilon>0$ such that for all $g, h \in \mathscr{F}(S, \mathscr{C}(\Omega, \mathbf{C}))$, if

$$
\|g(s, t)-h(s, t)\|<\varepsilon
$$

for all $s, t \in S$ then there is a $\lambda \in \Lambda(S, \mathbf{C})$ such that $h=g \delta \lambda$ and $|\lambda(s)-1|<\varepsilon^{\prime}$ for all $s \in S$.
c) Let $g \in \mathscr{F}(S, \mathscr{C}(\Omega, \mathbf{C}))$ and $\phi:[0,1] \times \Omega \longrightarrow \Omega$ a continuous map. We put for every $u \in[0,1]$,

$$
\begin{gathered}
\phi_{u}:=\phi(u, \cdot): \Omega \longrightarrow \Omega, \\
g_{u}: S \times S \longrightarrow U n \mathbf{C}, \quad(s, t) \longmapsto g(s, t) \circ \phi_{u} .
\end{gathered}
$$

Then $g_{u} \in \mathscr{F}(S, \mathscr{C}(\Omega, \mathbf{C}))$ for every $u \in[0,1]$ and there is a $\lambda \in \Lambda(S, \mathbf{C})$ with $g_{1}=$ $g_{0} \delta \lambda$.
a) By [3] Theorem 2.3 .2 (iii),

$$
\{\mathscr{S}(g) \mid g \in \mathscr{F}(S, \mathbf{C})\} / \approx_{\mathscr{S}}
$$

is finite. $\{\delta \lambda \mid \lambda \in \Lambda(S, \mathbf{C})\}$ is obviously a closed subgroup of $\mathscr{F}(S, \mathbf{C})$. By the above and [2] Proposition 2.2 .2 c$), \mathscr{F}(S, \mathbf{C})$ is the union of a finite family of closed pairwise disjoint sets homeomorphic to $\{\delta \lambda \mid \lambda \in \Lambda(S, \mathbf{C})\}$, so $\{\delta \lambda \mid \lambda \in \Lambda(S, \mathbf{C})\}$ is open.
b) By a), there is an $\varepsilon>0$ such that for all $g^{\prime}, h^{\prime} \in \mathscr{F}(S, \mathbf{C})$ with $d_{S}\left(g^{\prime}, h^{\prime}\right)<\varepsilon$ there is a $\lambda \in \Lambda(S, \mathbf{C})$ with $h^{\prime}=g^{\prime} \delta \lambda$. We may assume that

$$
(1+\varepsilon)^{\operatorname{Card} S}-1<\varepsilon_{\operatorname{Card} S},
$$

where $\varepsilon_{C a r d S}$ was defined in Lemma 9.2.1.
We put for every $\omega \in \Omega$

$$
\begin{aligned}
& g_{\omega}: S \times S \longrightarrow U n \mathbf{C}, \quad(s, t) \longmapsto(g(s, t))(\omega), \\
& h_{\omega}: S \times S \longrightarrow U n \mathbf{C}, \quad(s, t) \longmapsto(h(s, t))(\omega) .
\end{aligned}
$$

Let $\omega \in \Omega$. By the above, there is a $\lambda_{\omega} \in \Lambda(S, \mathbf{C})$ with $g_{\omega}=h_{\omega} \delta \lambda_{\omega}$. Let $s \in S$ and let $n \in \mathbb{N}$ be the least natural number with $s^{n}=1_{S}$. By [2] Proposition 3.4.1 c),

$$
\lambda_{\omega}(s)^{n}=\prod_{j=1}^{n-1}\left(g_{\omega}\left(s^{j}, s\right)^{*} h_{\omega}\left(s^{j}, s\right)\right)
$$

For every $j \in \mathbb{N}_{n-1}$,

$$
\begin{gathered}
\left\|1_{E}-g\left(s^{j}, s\right)^{*} h\left(s^{j}, s\right)\right\|=\left\|g\left(s^{j}, s\right)-h\left(s^{j}, s\right)\right\|<\varepsilon, \\
\left\|\prod_{j=1}^{n-1}\left(g\left(s^{j}, s\right)^{*} h\left(s^{j}, s\right)\right)\right\|=\left\|\prod_{j=1}^{n-1}\left(1_{E}-\left(1_{E}-g\left(s^{j}, s\right)^{*} h\left(s^{j}, s\right)\right)\right)\right\|<(1+\varepsilon)^{n}, \\
\left\|1_{E}-\prod_{j=1}^{n-1}\left(g\left(s^{j}, s\right)^{*} h\left(s^{j}, s\right)\right)\right\|<(1+\varepsilon)^{n-1}-1<\varepsilon_{\text {Card } S} .
\end{gathered}
$$

By Lemma 9.2.1, there is a unique $\gamma \in U n \mathbf{C}$ with

$$
\gamma^{n}=\prod_{j=1}^{n-1}\left(g\left(s^{j}, s\right)^{*} h\left(s^{j}, s\right)\right), \quad|\gamma-1|<\frac{1}{\operatorname{Card} S}
$$

For $\omega \in \Omega$, since $\left|1-\lambda_{\omega}(s)\right|<\varepsilon_{\text {Card } S}$, we get $\lambda_{\omega}(s)=\gamma(s)$. So if we put

$$
\lambda(s): \Omega \longrightarrow \mathbf{C}, \quad \omega \longmapsto \gamma(s)
$$

we have $\lambda \in \Lambda(S, \mathbf{C})$ and $g=h \delta \lambda$. By Lemma 9.2.1, we may choose ε in such a way that the inequality $|\lambda(s)-1|<\varepsilon^{\prime}$ holds for all $s \in S$.
c) By b), there is a family $\left(\lambda_{i}\right)_{i \in \mathbb{N}_{\mathrm{n}}}$ in $\Lambda(S, \mathbf{C})$ and

$$
0=u_{0}<u_{1}<\cdots<u_{n-1}<u_{n}=1
$$

such that $g_{u_{i}}=g_{u_{i-1}} \delta \lambda_{i}$ for every $i \in \mathbb{N}_{\mathrm{n}}$. By induction $g_{0} \delta\left(\prod_{i=1}^{j} \lambda_{i}\right)=g_{u_{j}}$ for every $j \in \mathbb{N}_{\mathrm{n}}$. Thus if we put $\lambda:=\prod_{i=1}^{n} \lambda_{i}$ then $g_{0} \delta \lambda=g_{1}$

Chapter 9 Variation of the Parameters

Remark. Let $\lambda \in \Lambda(T, E)$ and $f^{\prime}=f \delta \lambda(\in \mathscr{F}(T, E))$. For every full E-C*-algebra F and $n \in \mathbb{N}$ we denote by F_{n}^{\prime} the equivalent of F_{n} constructed with respect to f^{\prime} instead of f (Definition 5.0.2). By [2] Proposition 2.2.2 $a_{1} \Rightarrow a_{2}$, there is for every $n \in \mathbb{N}$ a unique E-C*-isomorphism $\varphi_{n}^{F}: F_{n} \longrightarrow F_{n}^{\prime}$ such that for all $m, n \in \mathbb{N}, m<n$, the diagram

is commutative, where the vertical arrows are the canonical inclusions. We put $C_{n}^{\prime}:=$ $\varphi_{n}^{E} C_{n}$ for evrey $n \in \mathbb{N}$. $\left(C_{n}^{\prime}\right)_{n \in \mathbb{N}}$ satisfies the conditions of Axiom 5.0.3 with respect to f^{\prime}, so we can construct a K-theory with respect to T, E, f^{\prime}, and $\left(C_{n}^{\prime}\right)_{n \in \mathbb{N}}$, which we shall denote by $K^{f^{\prime}}$. If $m, n \in \mathbb{N}, m<n$, then the diagrams

are commutative and so we get the isomorphisms

$$
\operatorname{Pr} F_{\rightarrow} \longrightarrow \operatorname{Pr} F_{\rightarrow}^{\prime}, \quad \text { un } F_{\leftarrow} \longrightarrow \text { un } F_{\leftarrow}^{\prime}
$$

By these considerations it can be followed that K and $K^{f^{\prime}}$ coincide.

DEFINITION 9.2.5 Let Ω be the spectrum of E, Γ a closed set of Ω, and $F a$ C^{*}-algebra. We denote by $\mathscr{C}(E ; \Gamma, F)$ the $E-C^{*}$-algebra obtained by endowing the C^{*}-algebra $\mathscr{C}(\Gamma, F)$ with the structure of an $E-C^{*}$-algebra by putting

$$
\alpha x: \Gamma \longrightarrow F, \quad \omega \longmapsto \alpha(\omega) x(\omega)
$$

for all $(\alpha, x) \in E \times \mathscr{C}(\Gamma, F)$. If Ω^{\prime} is an open set of Ω then the ideal and $E-C^{*}$-subalgebra

$$
\left\{x \in \mathscr{C}(E ; \Omega, F)|x|\left(\Omega \backslash \Omega^{\prime}\right)=0\right\}
$$

of $\mathscr{C}(E ; \Omega, F)$ will be denoted $\mathscr{C}_{0}\left(E ; \Omega^{\prime}, F\right)$.

By Tietze's theorem

$$
0 \longrightarrow \mathscr{C}_{0}\left(E ; \Omega^{\prime}, F\right) \xrightarrow{\varphi} \mathscr{C}(E ; \Omega, F) \xrightarrow{\psi} \mathscr{C}\left(E ; \Omega \backslash \Omega^{\prime}, F\right) \longrightarrow 0
$$

is an exact sequence in \mathfrak{M}_{E}, where φ denotes the inclusion map and

$$
\psi: \mathscr{C}(E ; \Omega, F) \longrightarrow \mathscr{C}\left(E ; \Omega \backslash \Omega^{\prime}, F\right), \quad x \longmapsto x \mid\left(\Omega \backslash \Omega^{\prime}\right) .
$$

PROPOSITION 9.2.6 We denote by Ω the spectrum of E, by Γ a closed set of Ω, and by $\vartheta:[0,1] \times \Omega \longrightarrow \Omega$ a continuous map such that

$$
\omega \in \Omega \Longrightarrow \vartheta(0, \omega)=\omega, \vartheta(1, \omega) \in \Gamma
$$

and $\vartheta(s, \omega)=\omega$ for all $s \in[0,1]$ and $\omega \in \Gamma$. We put $E^{\prime}:=\mathscr{C}(\Gamma, \mathbf{C}), E^{\prime \prime}:=E, \vartheta_{s}:=\vartheta(s, \cdot)$ for every $s \in[0,1]$, and

$$
\begin{aligned}
\phi: E \longrightarrow E^{\prime}, \quad x \longmapsto x \mid \Gamma, \quad \phi^{\prime}: E^{\prime} \longrightarrow E^{\prime \prime}=E, \quad x^{\prime} \longmapsto x^{\prime} \circ \vartheta_{1} \\
f^{\prime}: T \times T \longrightarrow U n E^{\prime}, \quad(s, t) \longmapsto \phi f(s, t)=f(s, t) \mid \Gamma \\
f^{\prime \prime}: T \times T \longrightarrow U n E^{\prime \prime}, \quad(s, t) \longmapsto \phi^{\prime} f^{\prime}(s, t)=f(s, t) \circ \vartheta_{1} .
\end{aligned}
$$

a) There is a $\lambda \in \Lambda(T, E)$ such that $f^{\prime \prime}=f \delta \lambda$ and the K-theories associated to f and $f^{\prime \prime}$ coincide (as formulated in the above Remark). If Γ is a one-point set (i.e. Ω is contractible) then $f^{\prime \prime}(s, t) \in U n \mathbf{C}(\subset U n E)$ for all $s, t \in T$.
b) If we put

$$
\psi: \mathscr{C}(E ; \Omega, F) \longrightarrow \mathscr{C}(E ; \Gamma, F), \quad x \longmapsto x \mid \Gamma
$$

then $K_{i}\left(\mathscr{C}_{0}(E ; \Omega \backslash \Gamma, F)\right)=\{0\}$ and

$$
K_{i}(\psi): K_{i}(\mathscr{C}(E ; \Omega, F)) \longrightarrow K_{i}(\mathscr{C}(E ; \Gamma, F))
$$

is a group isomorphism for every $i \in\{0,1\}$.
c) If Γ^{\prime} is a compact subspace of $\Omega \backslash \Gamma$ then

$$
K_{i}\left(\mathscr{C}_{0}\left(E ; \Omega \backslash\left(\Gamma \cup \Gamma^{\prime}\right), F\right)\right) \approx K_{i+1}\left(\mathscr{C}\left(E ; \Gamma^{\prime}, F\right)\right)
$$

for all $i \in\{0,1\}$.
d) Let $\bar{\Gamma}$ be a closed set of $\Omega, \bar{\varphi}: \mathscr{C}_{0}(E ; \Omega \backslash(\Gamma \cup \bar{\Gamma}), F) \longrightarrow \mathscr{C}(E ; \Omega, F)$ the inclusion map,

$$
\bar{\psi}: \mathscr{C}_{0}(E ; \Omega, F) \longrightarrow \mathscr{C}(E ; \Gamma \cup \bar{\Gamma}, F), \quad x \longmapsto x \mid(\Gamma \cup \bar{\Gamma}),
$$

and δ_{0}, δ_{1} the corresponding maps from the six-term sequence associated to the exact sequence in \mathfrak{M}_{E}

$$
0 \longrightarrow \mathscr{C}_{0}(E ; \Omega \backslash(\Gamma \cup \bar{\Gamma}), F) \xrightarrow{\bar{\varphi}} \mathscr{C}(E ; \Omega, F) \xrightarrow{\bar{\psi}} \mathscr{C}(E ; \Gamma \cup \bar{\Gamma}, F) \longrightarrow 0
$$

then the sequence

$$
\begin{aligned}
& 0 \longrightarrow K_{i}(\mathscr{C}(E ; \Omega, F)) \xrightarrow{K_{i}(\psi)} K_{i}(\mathscr{C}(E ; \Gamma \cup \bar{\Gamma}, F)) \xrightarrow{\delta_{i}} \\
& \xrightarrow{\delta_{i}} K_{i+1}\left(\mathscr{C}_{0}(E ; \Omega \backslash(\Gamma \cup \bar{\Gamma}), F)\right) \longrightarrow 0
\end{aligned}
$$

is exact for every $i \in\{0,1\}$.
a) By Lemma 9.2 .4 c$)$, for every $m \in \mathbb{N}$ there is a $\lambda_{m} \in \Lambda\left(S_{m}, E\right)$ with $f^{\prime \prime} \mid\left(S_{m} \times S_{m}\right)=$ $g_{m} \delta \lambda_{m}$. We put

$$
\lambda: T \longrightarrow U n E, \quad t \longmapsto \lambda_{m}(t) \quad \text { if } \quad t \in S_{m} .
$$

Then

$$
f^{\prime \prime}(s, t)=\prod_{m \in \mathbb{N}}\left(g_{m} \delta \lambda\right)\left(s_{m}, t_{m}\right)=(f \delta \lambda)(s, t)
$$

for all $s, t \in T$, i.e. $f^{\prime \prime}=f \delta \lambda$.
b) Let $n \in \mathbb{N}$ and $X \in(\overbrace{\mathscr{C}_{0}\left(E^{\prime \prime} ; \Omega \backslash \Gamma, F\right)}^{\sim})_{n}$. Then X has the form

$$
X=\sum_{t \in T_{n}}\left(\left(\alpha_{t}, x_{t}\right) \otimes i d_{K}\right) V_{t}^{f^{\prime \prime}}
$$

where $\alpha_{t} \in E^{\prime \prime}$ and $x_{t} \in \mathscr{C}_{0}\left(E^{\prime \prime} ; \Omega \backslash \Gamma, F\right)$ for all $t \in T_{n}$. We put

$$
X_{s}:=\sum_{t \in T_{n}}\left(\left(\alpha_{t} \circ \vartheta_{s}, x_{t} \circ \vartheta_{s}\right) \otimes i d_{K}\right) V_{t}^{f^{\prime \prime}}
$$

for every $s \in[0,1]$. Then

$$
[0,1] \longrightarrow(\overbrace{\mathscr{C} 0}\left(E^{\prime \prime} ; \Omega \backslash \Gamma, F\right)))_{n}, \quad s \longmapsto X_{s}
$$

is a continuous map, $X_{0}=X$,

$$
X_{1}=\sum_{t \in T}\left(\left(\alpha_{t} \circ \vartheta_{1}, 0\right) \otimes i d_{K}\right) V_{t}^{f^{\prime \prime}}
$$

and

$$
(\overbrace{\mathscr{C}_{0}\left(E^{\prime \prime}: \Omega \backslash \Gamma, F\right)})_{n} \longrightarrow(\overbrace{\mathscr{C}_{0}\left(E^{\prime \prime} ; \Omega \backslash \Gamma, F\right)}^{\sim})_{n}, \quad X \longmapsto X_{s}
$$

is an $E^{\prime \prime}$ - C^{*}-homomorphism for every $s \in[0,1]$. Thus $K_{i}^{f^{\prime \prime}}\left(\mathscr{C}_{0}\left(E^{\prime \prime} ; \Omega \backslash \Gamma, F\right)\right)=\{0\}$. By a), $K_{i}\left(\mathscr{C}_{0}(E ; \Omega \backslash \Gamma, F)\right)=\{0\}$.

If $\varphi: \mathscr{C}_{0}(E ; \Omega \backslash \Gamma, f) \longrightarrow \mathscr{C}(E ; \Omega, F)$ denotes the inclusion map then

$$
0 \longrightarrow \mathscr{C}_{0}(E ; \Omega \backslash \Gamma, F) \xrightarrow{\varphi} \mathscr{C}(E ; \Omega, F) \xrightarrow{\psi} \mathscr{C}(E ; \Gamma, F) \longrightarrow 0
$$

is an exact sequence in \mathfrak{M}_{E} and the assertion follows from the six-term sequence (Corollary 8.3.8 c)).
c) If we put

$$
\begin{gathered}
F_{1}:=\mathscr{C}_{0}\left(E ; \Omega \backslash\left(\Gamma \cup \Gamma^{\prime}\right), F\right), \quad F_{2}:=\mathscr{C}_{0}(E ; \Omega \backslash \Gamma, F), \quad F_{3}:=\mathscr{C}\left(E ; \Gamma^{\prime}, F\right), \\
\varphi: F_{1} \longrightarrow F_{2}, \quad x \longmapsto x, \\
\psi: F_{2} \longrightarrow F_{3}, \quad x \longmapsto x \mid \Gamma^{\prime}
\end{gathered}
$$

then

$$
0 \longrightarrow F_{1} \xrightarrow{\varphi} F_{2} \xrightarrow{\psi} F_{3} \longrightarrow 0
$$

is an exact sequence in \mathfrak{M}_{E} and the assertion follows from b) and from the six-term sequence (Corollary 8.3.8 d)).
d) $\bar{\varphi}$ factorizes through $\mathscr{C}_{0}(E ; \Omega \backslash \Gamma, f)$ so by b), $K_{i}(\bar{\varphi})=0$ and the assertion follows from the six-term sequence Corollary 8.3.8 b).

COROLLARY 9.2.7 We use the notation of Proposition 9.2.6. Let $\bar{\Omega}$ be a compact space and $\bar{\vartheta}: \Omega \longrightarrow \bar{\Omega}$ a continuous map such that the induced maps $\Omega \backslash\left(\Gamma \cup \Gamma^{\prime}\right) \rightarrow$ $\bar{\Omega} \backslash \bar{\vartheta}\left(\Gamma \cup \Gamma^{\prime}\right), \Gamma \rightarrow \bar{\vartheta}(\Gamma)$, and $\Gamma^{\prime} \rightarrow \bar{\vartheta}\left(\Gamma^{\prime}\right)$ are homeomorphisms. If we put $\bar{E}:=\mathscr{C}(\bar{\Omega}, \mathbf{C})$ and

$$
\bar{\phi}: \bar{E} \longrightarrow E, \quad x \longmapsto x \circ \bar{\vartheta}
$$

and take an $\bar{f} \in \mathscr{F}(T, \bar{E})$ such that $f(s, t)=\bar{\phi} \bar{f}(s, t)$ for all $s, t \in T$ and a corresponding $\left(\bar{C}_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \bar{E}_{n}$ then with the notation from the beginning of section 9.1 (with E and \bar{E} interchanged)

$$
\bar{K}_{i}\left(\mathscr{C}_{0}\left(\bar{E} ; \bar{\Omega} \backslash \bar{\vartheta}\left(\Gamma \cup \Gamma^{\prime}\right), F\right)\right) \approx \bar{K}_{i+1}\left(\mathscr{C}\left(\bar{E} ; \bar{\vartheta}\left(\Gamma^{\prime}\right), F\right)\right),
$$

for all $i \in\{0,1\}$, where \bar{K} denotes the K-theory associated to T, \bar{E}, \bar{f}, and $\left(\bar{C}_{n}\right)_{n \in \mathbb{N}}$. If in addition Γ^{\prime} has the same property as Γ then

$$
\bar{K}_{i}(\mathscr{C}(\bar{E} ; \bar{\vartheta}(\Gamma), F)) \approx \bar{K}_{i}\left(\mathscr{C}\left(\bar{E} ; \bar{\vartheta}\left(\Gamma^{\prime}\right), F\right)\right)
$$

By our hypotheses,

$$
\begin{gathered}
\bar{\Phi}\left(\mathscr{C}_{0}\left(E ; \Omega \backslash\left(\Gamma \cup \Gamma^{\prime}\right), F\right)\right) \approx \mathscr{C}_{0}\left(\bar{E} ; \bar{\Omega} \backslash \bar{\vartheta}\left(\Gamma \cup \Gamma^{\prime}\right), F\right) \\
\bar{\Phi}(\mathscr{C}(E ; \Gamma, F)) \approx \mathscr{C}(\bar{E} ; \bar{\vartheta}(\Gamma), F), \quad \bar{\Phi}\left(\mathscr{C}\left(E ; \Gamma^{\prime}, F\right)\right) \approx \mathscr{C}\left(\bar{E} ; \bar{\vartheta}\left(\Gamma^{\prime}\right), F\right),
\end{gathered}
$$

so by Proposition 9.2.6 b) and Theorem 9.1.3,

$$
\begin{gathered}
\bar{K}_{i}\left(\mathscr{C}_{0}\left(\bar{E} ; \bar{\Omega} \backslash \bar{\vartheta}\left(\Gamma \cup \Gamma^{\prime}\right), F\right)\right) \approx K_{i}\left(\mathscr{C}_{0}\left(E ; \Omega \backslash\left(\Gamma \cup \Gamma^{\prime}\right), F\right)\right) \approx \\
\approx K_{i+1}\left(\mathscr{C}\left(E ; \Gamma^{\prime}, F\right)\right) \approx \bar{K}_{i+1}\left(\mathscr{C}\left(\bar{E} ; \bar{\vartheta}\left(\Gamma^{\prime}\right), F\right)\right) .
\end{gathered}
$$

If the supplementary hypothesis is fulfilled then by Proposition 9.2 .6 c) and Theorem 9.1.3,

$$
\begin{aligned}
& \bar{K}_{i}(\mathscr{C}(\bar{E} ; \bar{\vartheta}(\Gamma), F)) \approx K_{i}(\mathscr{C}(E ; \Gamma, F)) \approx \\
\approx & \left.K_{i}\left(\mathscr{C}\left(E ; \Gamma^{\prime}\right), F\right)\right) \approx \bar{K}_{i}\left(\mathscr{C}\left(\bar{E} ; \bar{\vartheta}\left(\Gamma^{\prime}\right), F\right)\right) .
\end{aligned}
$$

COROLLARY 9.2.8 Assume $E=\mathscr{C}(\mathbb{I}, \mathbf{C})$.
a) If $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4} \in \mathbb{R}$ such that $\theta_{1} \leq \theta_{2}<\theta_{1}+2 \pi, \theta_{3} \leq \theta_{4}<\theta_{3}+2 \pi$ then

$$
\begin{aligned}
& K_{i}\left(\mathscr{C}\left(E ;\left\{e^{i \theta} \mid \theta_{1} \leq \theta \leq \theta_{2}\right\}, F\right)\right) \approx \\
& \approx K_{i}\left(\mathscr{C}\left(E ;\left\{e^{i \theta} \mid \theta_{3} \leq \theta \leq \theta_{4}\right\}, F\right)\right)
\end{aligned}
$$

for every $i \in\{0,1\}$.
b) Let $\theta_{1}, \theta_{2} \in \mathbb{R}, \theta_{1} \leq \theta_{2}<\theta_{1}+2 \pi$ and let Γ be a closed set of

$$
\mathbb{T} \backslash\left\{e^{i \theta} \mid \theta_{2}<\theta<\theta_{1}+2 \pi\right\}
$$

such that $e^{i \theta_{1}} \in \Gamma$ and $e^{i \theta_{2}} \notin \Gamma$ if $e^{i \theta_{1}} \neq e^{i \theta_{2}}$. Then

$$
K_{i}\left(\mathscr{C}_{0}(E ; \mathbb{T} \backslash \Gamma, F)\right) \approx K_{i+1}(\mathscr{C}(E ; \Gamma, F))
$$

for every $i \in\{0,1\}$. Moreover

$$
K_{i}\left(\mathscr{C}_{0}(E ; \mathbb{T} \backslash \Gamma, F)\right) \approx\left\{\begin{array}{cl}
K_{i+1}(\mathscr{C}(E ;\{1\}, F))^{\Gamma} & \text { if } \quad F \text { is finite } \\
\sum_{n \in \mathbb{N}} K_{i+1}(\mathscr{C}(E ;\{1\}, F)) & \text { if } \quad F \text { is infinite }
\end{array}\right.
$$

c) If Γ_{1}, Γ_{2} are closed sets of \mathbb{T}, not equal to \mathbb{T} and such that their cardinal numbers are equal if they are finite then

$$
K_{i}\left(\mathscr{C}\left(E ; \Gamma_{1}, F\right)\right) \approx K_{i}\left(\mathscr{C}\left(E ; \Gamma_{2}, F\right)\right)
$$

for all $i \in\{0,1\}$.
a) We may assume $\theta_{1} \leq \theta_{3}<\theta_{1}+2 \pi$. Put $\Omega^{\prime}:=\left[\theta_{1}, \sup \left(\theta_{2}, \theta_{3}\right)\right], E^{\prime}:=\mathscr{C}\left(\Omega^{\prime}, \mathbf{C}\right)$,

$$
\begin{array}{cl}
\vartheta: \Omega^{\prime} \longrightarrow \mathbb{T}, & \alpha \longmapsto e^{i \alpha} \\
\phi: E \longrightarrow E^{\prime}, & x \longmapsto x \circ \vartheta .
\end{array}
$$

Since it is possible to find an $f^{\prime} \in \mathscr{F}\left(T, E^{\prime}\right)$ and a $\left(C_{n}^{\prime}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} E_{n}^{\prime}$ with the desired properties, we get

$$
K_{i}\left(\mathscr{C}\left(E ;\left\{e^{i \theta} \mid \theta_{1} \leq \theta \leq \theta_{2}\right\}, F\right)\right) \approx K_{i}\left(\mathscr{C}\left(E ;\left\{\mathrm{e}^{\mathrm{i} \theta_{3}}\right\}, F\right)\right)
$$

by Corollary 9.2.7. Thus

$$
\begin{gathered}
K_{i}\left(\mathscr{C}\left(E ;\left\{e^{i \theta} \mid \theta_{3} \leq \theta \leq \theta_{4}\right\}, F\right)\right) \approx K_{i}\left(\mathscr{C}\left(E ;\left\{\mathrm{e}^{\mathrm{i} \theta_{3}}\right\}, F\right)\right) \\
K_{i}\left(\mathscr{C}\left(E ;\left\{e^{i \theta} \mid \theta_{1} \leq \theta \leq \theta_{2}\right\}, F\right)\right) \approx \\
\approx K_{i}\left(\mathscr{C}\left(E ;\left\{e^{i \theta} \mid \theta_{3} \leq \theta \leq \theta_{4}\right\}, F\right)\right)
\end{gathered}
$$

b) If we put $\Omega^{\prime}:=\left[\theta_{1}, \theta_{1}+2 \pi\right], E^{\prime}:=\mathscr{C}\left(\Omega^{\prime}, \mathbf{C}\right)$,

$$
\vartheta: \Omega^{\prime} \longrightarrow \mathbb{T}, \quad \alpha \longmapsto e^{i \alpha}
$$

Chapter 9 Variation of the Parameters

$$
\phi: E \longrightarrow E^{\prime}, \quad x \longmapsto x \circ \vartheta,
$$

then the first assertion follows from Corollary 9.2.7. If Γ is finite then the last assertion follows now from a) (and Corollary 6.2.10 b) and Proposition 7.3.1 b)).

Assume now Γ infinite. Then $\Omega_{0}:=\mathbb{T} \backslash \Gamma$ is the union of a countable set of open intervals. Let Ξ be the set of finite such intervals ordered by inclusion and for every $\Theta \in \Xi$ let Ω_{Θ} be the union of the intervals of Θ and $\Gamma_{\Theta}:=\mathbb{T} \backslash \Omega_{\Theta}$. By the above,

$$
K_{i}\left(\mathscr{C}_{0}\left(E ; \mathbb{T} \backslash \Gamma_{\Theta}, F\right)\right) \approx K_{i+1}(\mathscr{C}(E ;\{1\}, F))^{\Theta}
$$

for every $\Theta \in \Xi$. We get an inductive system of E-modules with $\mathscr{C}_{0}(E ; \mathbb{T} \backslash \Gamma, F)$ as inductive limit. By Theorem 6.2.12 and Theorem 7.3.6, $K_{i}\left(\mathscr{C}_{0}(E ; \mathbb{T} \backslash \Gamma, F)\right)$ is the inductive limit of $K_{i}\left(\mathscr{C}_{0}\left(E ; \mathbb{T} \backslash \Gamma_{\Theta}, F\right)\right)$ for Θ running through Ξ, which proves the assertion.
c) follows from b).

Remark. Let δ_{0} and δ_{1} be the group homomorphisms from the six-term sequence associated to the exact sequence in \mathfrak{M}_{E}

$$
0 \longrightarrow \mathscr{C}_{0}(E ; \mathbb{T} \backslash \Gamma, F) \longrightarrow \mathscr{C}(E ; \mathbb{T}, F) \longrightarrow \mathscr{C}(E ; \Gamma, F) \longrightarrow 0 .
$$

Then δ_{0} and δ_{1} do not coincide with the group isomorphism

$$
K_{i}\left(\mathscr{C}_{0}(E ; \mathbb{T} \backslash \Gamma, F)\right) \approx K_{i+1}(\mathscr{C}(E ; \Gamma, F))
$$

from Corollary 9.2.8 b).

COROLLARY 9.2.9 If Ω is a compact space such that $E=\mathscr{C}(\Omega \times \mathbb{T}, \mathbf{C})$ then

$$
K_{i}\left(\mathscr{C}_{0}(E ; \Omega \times(\mathbb{T} \backslash\{1\}), F)\right) \approx K_{i+1}(\mathscr{C}(E ; \Omega \times\{1\}, F))
$$

for every $i \in\{0,1\}$.

COROLLARY 9.2.10 If the spectrum of E is \mathbb{B}_{n} for some $n \in \mathbb{N}$ then $K_{i}\left(\mathscr{C}_{0}\left(E ; \mathbb{B}_{n} \backslash\{0\}, F\right)\right)=\{0\}$ and

$$
K_{i}\left(\mathscr{C}_{0}\left(E ;\left\{\alpha \in \mathbb{R}^{n} \mid 0<\|\alpha\|<1\right\}, F\right)\right) \approx K_{i+1}\left(\mathscr{C}\left(E ; \mathbf{S}_{n-1}, F\right)\right)
$$

for every $i \in\{0,1\}$.

COROLLARY 9.2.11 Let $\left(k_{j}\right)_{j \in J}$ be a finite family in $\mathbb{N}, \Omega^{\prime}$ the topological sum of the family of balls $\left(\mathbb{B}_{k_{j}}\right)_{j \in J}$, and Ω the compact space obtained from Ω^{\prime} by identifying the centers of theses balls. If ω denotes the point of Ω obtained by this identification and S denotes the union of $\left(\mathbf{S}_{k_{j}-1}\right)_{j \in J}$ in Ω and if $E=\mathscr{C}(\Omega, \mathbf{C})$ then

$$
\begin{gathered}
K_{i}\left(\mathscr{C}_{0}(E ; \Omega \backslash\{\omega\}, F)\right)=\{0\}, \\
K_{i}\left(\mathscr{C}_{0}(E ;(\Omega \backslash(\{\omega\} \cup S), F)) \approx K_{i+1}(\mathscr{C}(E ; S, F))\right.
\end{gathered}
$$

for every $i \in\{0,1\}$.

If we denote by $\vartheta: \Omega^{\prime} \longrightarrow \Omega$ the quotient map, by Γ the subset of Ω^{\prime} formed by the centers of the balls $\left(\mathbf{B}_{k_{j}}\right)_{j \in J}$, and by Γ^{\prime} the union of $\left(\mathbf{S}_{k_{j}-1}\right)_{j \in J}\left(\Gamma^{\prime} \subset \Omega^{\prime}\right)$ then the assertions follow from Proposition 9.2.6 b), c) and Corollary 9.2.7.

LEMMA 9.2.12 Let S be a finite group, $g \in \mathscr{F}(S, E)$, and Ω the spectrum of E.
a) If there is an $\omega_{0} \in \Omega$ and a family $(\theta(s, t))_{s, t \in S}$ of selfadjoint elements of E such that

$$
\theta(r, s)+\theta(r s, t)=\theta(r, s t)+\theta(s, t), \quad g(s, t)=e^{i \theta(s, t)}\left(g(s, t)\left(\omega_{0}\right)\right)
$$

for all $r, s, t \in S$ then there is a $\lambda \in \Lambda(S, \mathbf{C})$ with $(g \delta \lambda)(s, t)=g(s, t)\left(\omega_{0}\right)$ for all $s, t \in S$.
b) If Ω is totally disconnected then there is a $\lambda \in \Lambda(S, E)$ such that

$$
((g \delta \lambda)(s, t))(\Omega)
$$

is finite for all $s, t \in S$.
a) For every $u \in[0,1]$ put

$$
g_{u}: S \times S \longrightarrow U n E, \quad(s, t) \longmapsto e^{i u \theta(s, t)}\left(g(s, t)\left(\omega_{0}\right)\right) .
$$

Then

$$
[0,1] \longrightarrow \mathscr{F}(S, E), \quad u \longmapsto g_{u}
$$

is a continuous map with $g_{1}=g$ and $g_{0}(s, t)=g(s, t)\left(\omega_{0}\right)$ for all $s, t \in S$. By Lemma 9.2.4 a),b), there are

$$
0=u_{0}<u_{1}<\cdots<u_{k-1}<u_{k}=1
$$

and a family $\left(\lambda_{j}\right)_{j \in \mathbb{N}_{\mathrm{k}}}$ in $\Lambda(S, \mathbf{C})$ such that $g_{u_{j-1}}=g_{u_{j}} \delta \lambda_{j}$ for every $j \in \mathbb{N}_{\mathrm{k}}$. We prove by induction that

$$
g_{u_{l-1}}=g \prod_{j=l}^{k} \delta \lambda_{j}
$$

for all $l \in \mathbb{N}_{\mathrm{k}}$. This is obvious for $l=k$. Assume the identity holds for $l \in \mathbb{N}_{\mathrm{k}}, l>1$. Then

$$
g \prod_{j=l-1}^{k} \delta \lambda_{j}=\left(g \prod_{j=l}^{k} \delta \lambda_{j}\right) \delta \lambda_{l-1}=g_{u_{l-1}} \delta \lambda_{l-1}=g_{u_{l-2}}
$$

which finishes the proof by induction. If we put

$$
\lambda:=\prod_{j=1}^{k} \lambda_{j} \in \Lambda(S, \mathbf{C})
$$

then by the above

$$
g \delta \lambda=g \prod_{j=1}^{k} \delta \lambda_{j}=g_{0}
$$

b) Let $\omega_{0} \in \Omega$. Since Ω is totally disconnected and S is finite, by continuity, there is a clopen neighborhood Ω_{0} of ω_{0} and a family $(\theta(s, t))_{s, t \in S}$ in $\operatorname{Re} \mathscr{C}\left(\Omega_{0}, \mathbf{C}\right)$ such that

$$
\theta(r, s)+\theta(r s, t)=\theta(r, s t)+\theta(s, t), \quad g(s, t) \mid \Omega_{0}=e^{i \theta(s, t)}\left(g(s, t)\left(\omega_{0}\right)\right)
$$

for all $r, s, t \in S$. By a), there is a $\lambda \in \Lambda(S, \mathbf{C})$ with

$$
\left(\left(g \mid \Omega_{0}\right) \delta \lambda\right)(s, t)=g(s, t)\left(\omega_{0}\right)
$$

for all $s, t \in S$.
The assertion follows now from the fact that there is a finite partition $\left(\Omega_{j}\right)_{j \in J}$ of Ω with clopen sets such that Ω_{j} possesses the property of the above Ω_{0} for every $j \in J$.

PROPOSITION 9.2.13 If the spectrum of E is totally disconnected then there is a $\lambda \in$ $\Lambda(T, E)$ such that $((f \delta \lambda)(s, t))(\Omega)$ is finite for all $s, t \in T$.

By Lemma 9.2 .12 b), for every $m \in \mathbb{N}$ there is a $\lambda_{m} \in \Lambda\left(S_{m}, E\right)$ such that $\left(\left(g_{m} \delta \lambda_{m}\right)(s, t)\right)(\Omega)$ is finite for all $s, t \in S_{m}$. If we put

$$
\lambda: T \longrightarrow U n E, \quad t \longmapsto \lambda_{m}(t) \quad \text { if } \quad t \in S_{m}
$$

then λ has the desired properties.

PROPOSITION 9.2.14 Assume that T, f, and $\left(C_{n}\right)_{n \in \mathbb{N}}$ satisfy the conditions of Example 5.0.4 and of its Remark 1 and that the spectrum Ω of E is simply connected.
a) There is a $\lambda \in \Lambda(T, E)$ such that $(f \delta \lambda)(s, t) \in \mathbf{C}$ for all $s, t \in T$.
b) If $K_{1}(\mathscr{C}(\Omega, \mathbf{C}))=\{0\}$ for the classical K_{1} then $K_{1}(E)=\{0\}$ for the present theory.
a) follows from Lemma 9.2.12 a).
b) follows from a), Remark 1 of Example 5.0.4, and Proposition 7.1.10.

