

Passivating Inorganic Interlayers at the Perovskite/C₆₀ Interface in Monolithic Perovskite Silicon Tandem Solar Cells

Johanna Modes^{1, 2, *}, Patricia S. C. Schulze¹, Carl Eric Hartwig³, Stefan Lange³, Armin Richter¹, Juliane Borchert^{1, 2}, Andreas Bett^{4, 5}

¹Silicon-Perovskite-Tandem Technologies, Fraunhofer ISE, Freiburg, Germany
²INATECH, University of Freiburg, Freiburg, Germany
³Diagnostics and Metrology of Solar Cells, Fraunhofer CSP, Halle, Germany
⁴Division Institute Directorate, Fraunhofer ISE, Freiburg, Germany
⁵Institute of Physics, University of Freiburg, Freiburg, Germany

Email address:

Johanna.modes@ise.fraunhofer.de (Johanna Modes), Patricia.schulze@ise.fraunhofer.de (Patricia S. C. Schulze), Carl.eric.hartwig@imws.fraunhofer.de (Carl Eric Hartwig), Stefan.lange@csp.fraunhofer.de (Stefan Lange), Armin.richter@ise.fraunhofer.de (Armin Richter), Juliane.borchert@ise.fraunhofer.de (Juliane Borchert), Andreas.bett@ise.fraunhofer.de (Andreas Bett)

*Corresponding author

Abstract

Metal halide perovskites have emerged in recent years as promising absorber materials for solar cells with the potential to combine high power conversion efficiency with low production costs. However, significant non-radiative charge carrier recombination occurs at the perovskite interface with the electron contact, the fullerene C_{60} , which prevents the full exploitation of the solar cell's potential. Thermal evaporation of the C_{60} contact layer induces states within the bandgap, which act as recombination centers, lowers the quasi-Fermi level splitting, and thus, limits the open circuit voltage (V_{OC}) in solar cell devices. Ultra-thin passivation layers at the perovskite/ C_{60} interface are used to reduce non-radiative recombination losses. To enable industrial upscaling, our focus is on inorganic passivation layers deposited via atomic layer deposition (ALD, *e.g.*, AlO_x). By adjusting the ALD parameters, an AlO_x interlayer has been developed that increases the *i* V_{OC} up to 50 mV and improves the V_{OC} for single-junction and tandem devices. To better understand the effects that play a role in this passivation, photoluminescence quantum yield (PLQY), angle-resolved X-ray photoelectron spectroscopy (ARXPS), and surface photovoltage (SPV) measurements were carried out. Since state-of-the-art perovskite solar cells using a LiF_x passivation layer suffer from severe device degradation over time, initial stability testing was carried out providing indications that a thin AlO_x passivation layer can slightly improve device stability and thus, can serve as a robust alternative to LiF_x.

Keywords

Tandem Solar Cells, Perovskite/C₆₀ Interface, Passivation Layers, Atomic Layer Deposition