

Hybrid TiO₂-TiAcAc/SnO₂ Electron Transporting Layer Enable High V_{oc} in Carbon-based Perovskite Solar Cells

Warunee Khampa¹, Woraprom Passatorntaschakorn², Wongsathon Musikpan¹, Atcharawon Gardchareon^{2, 3, 4}, Pipat Ruankham^{2, 3, 4}, Duangmanee Wongratanaphisan^{1, 2, 3, 4, *}

¹Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand ²Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand ³Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand

⁴Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai, Thailand

Email address:

warunee_kha@cmu.ac.th (Warunee Khampa), woraprom.pa@gmail.com (Woraprom Passatorntaschakorn), wongsathon_musik@cmu.ac.th (Wongsathon Musikpan), atcharawon.g@cmu.ac.th (Atcharawon Gardchareon), pipat.r@cmu.ac.th (Pipat Ruankham), duangmanee.wong@cmu.ac.th (Duangmanee Wongratanaphisan)

*Corresponding author

Abstract

Carbon-based perovskite solar cells (C-PSCs) are attracting considerable attention in the field of photovoltaic technology due to their potential for cost-effective production and exceptional long-term stability. However, a key barrier to their growth is the limited power conversion efficiency (PCE). This study demonstrates an approach to improve the PCE of C-PSCs by introducing a hybrid TiO₂+TiAcAc/SnO₂ electron transporting layer through a low-temperature process (\leq 150°C). The technique involves incorporating titanium diisopropoxide bis(acetylacetonate) (TiAcAc) into TiO₂ and modifying the interface between the electron transporting layer (ETL) and perovskite by using an ultrathin SnO₂ film. The addition of TiAcAc effectively closes the voids among the TiO₂ nanoparticles, resulting in a more compact TiO₂ coating. Consequently, the inclusion of TiAcAc in TiO₂ leads to an augmentation of the open circuit voltage (V_{OC}) to 1.10V. Moreover, an ultrathin SnO₂ film is applied to passivate the interface between TiO₂+TiAcAc and the perovskite layers. This results in an increased fill factor (FF) by reducing interface defects. Therefore, the device with an active area of 0.09 cm², utilizing a TiO₂+TiAcAc/SnO₂ ETL and fabricated under ambient conditions with a relative humidity of 35%RH, achieves a maximum PCE of 16.00%, with an open-circuit voltage (V_{OC}) of 1.09V, a short-circuit current density (J_{SC}) of 20.34 mA cm⁻², and a fill factor (FF) of 72.00%. It is expected that this work will offer an effective approach to raise the photovoltaic performance of the C-PSCs.

Keywords

Carbon-based Perovskite Solar Cells, Electron Transporting Layer, Tio₂, TiAcAc, SnO₂