

# Sustainable Planar HTM-Free Carbon Electrode-Based Perovskite Solar Cells: Stability Beyond Two Years

## Woraprom Passatorntaschakorn<sup>1</sup>, Warunee Khampa<sup>2</sup>, Wongsathon Musikpan<sup>2</sup>, Atcharawon Gardchareon<sup>1</sup>, Pipat Ruankham<sup>1, 3, 4</sup>, Duangmanee Wongratanaphisan<sup>1, 3, 4, \*</sup>

<sup>1</sup>Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand <sup>2</sup>Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand <sup>3</sup>Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand

<sup>4</sup>Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai, Thailand

#### **Email address:**

woraprom.pa@gmail.com (Woraprom Passatorntaschakorn), warunee\_kha@cmu.ac.th (Warunee Khampa), wongsathon\_musik@cmu.ac.th (Wongsathon Musikpan), atcharawon.g@cmu.ac.th (Atcharawon Gardchareon), pipat.r@cmu.ac.th (Pipat Ruankham), duangmanee.wong@cmu.ac.th (Duangmanee Wongratanaphisan)

\*Corresponding author

#### Abstract

Swift advancement in perovskite solar cell (PSCs) efficiency poses a challenge in maintaining a balance among sustainability, efficiency, and cost for competitive commercialization. Ongoing research is dedicated to effectively addressing these challenges. Traditional PSCs rely on expensive and unstable hole-transporting materials (HTMs) and noble metal electrodes, leading to poor device stability. To overcome these challenges, this study introduces unencapsulated planar HTM-free carbon electrode-based PSCs (C-PSCs) created through an entirely low-temperature process (< 160  $^{\circ}$ C) in ambient atmospheric conditions. The approach emphasizes simplicity and cost-effectiveness, incorporating a single electron transporting layer and a one-step perovskite layer (Cs<sub>0.17</sub>FA<sub>0.83</sub>Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>) fabrication. Carbon films, prepared using an ethanol solvent interlacing method and heat-press transfer, serve as both hole transport layers (HTL) and electrodes. This simplified architecture leverages the properties of carbon materials, achieving the highest power conversion efficiency (PCE) of 11.09% and exceptional shelf-life stability exceeding 2 years (~20,000 hours) without encapsulation. Remarkably, thermal and humidity stability tests under accelerated aging conditions (85% relative humidity, 85  $^{\circ}$ ) demonstrated an average 90% efficiency drop after 100 hours. Furthermore, the scalability of the technique is demonstrated in 1.00 cm<sup>2</sup> planar HTM-free C-PSCs on recycled FTO/TiO<sub>2</sub>-NPs substrates, exhibiting remarkable performance under both 1 sun and LED illuminations. This approach lowers production costs, making PSCs more renewable and sustainable, paving the way for cost-effective and eco-friendly commercialized PSCs.

### **Keywords**

Carbon Electrode, HTM-free, Low-temperature, Perovskite Solar Cells, Stability, Sustainability