Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach
International Journal of Materials Science and Applications
Volume 3, Issue 5, September 2014, Pages: 268-273
Received: Jul. 26, 2014; Accepted: Aug. 12, 2014; Published: Sep. 30, 2014
Views 1455      Downloads 144
Authors
Hossein Mazidabadi, Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
Hamidreza Simchi, Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran; Semiconductor Technology Center, Tehran, Iran
Mahdi Esmaeilzadeh, Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
Article Tools
Follow on us
Abstract
Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external electric field is applied.
Keywords
Graphene Möbius Strips, Magnetic Moment, and Spin-Dependent Density of States
To cite this article
Hossein Mazidabadi, Hamidreza Simchi, Mahdi Esmaeilzadeh, Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach, International Journal of Materials Science and Applications. Vol. 3, No. 5, 2014, pp. 268-273. doi: 10.11648/j.ijmsa.20140305.29
References
[1]
C-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, Phys. Rev. Lett. 105, 235501 (2010).
[2]
J. Gravesen and M. Willatzen, Phys. Rev. A 72, 032108 (2005).
[3]
N. Zhao, H. Dong, S. Yang, and C.P Sun, Phys. Rev. B 79, 125440 (2009).
[4]
D .J. Ballon and H. U. Voss, Phys. Rev. Lett. 101, 247701 (2008).
[5]
S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, and N. Hatakenaka, Nature(London) 417, 397 (2002).
[6]
D. Ajami, O. Oeckler, A. Simon, and R. Herges, Nature (Londen) 426, 819 (2003).
[7]
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Sceince, 321, 385 (2008).
[8]
D. E. Jiang and S. Dai, J. Phys. Chem. C 112, 5438 (2008).
[9]
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn, 65, 1920 (1996).
[10]
Y-W. Son, M. L. Cohen, and S. G. Louie, Nature (Londen) 444, 347 (2006).
[11]
O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008).
[12]
L. Brey, H. A. Fertig, and S. Das Sarma, Phys. Rev. Lett. 99, 116802 (2007).
[13]
S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B 82, 245412 (2010).
[14]
K.WakabayashiandK.Harigaya,J.Phys.Soc.Jpn.72,998(2003).
[15]
R. Herges, Chem. Rev 106, 4820 (2006).
[16]
E. W. S. Caetano, V. N. Freire, S. G. dos Santos, D. S. Galvao, and F. Sato, J. Chem. Phys. 128, 164719 (2008).
[17]
Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Phys. Rev. B 80, 195310 (2009).
[18]
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[19]
AD Güçlü, M Grabowski, P Hawrylak, Phys. Rev. B 87, 035435 (2013).
[20]
SY Yue, QB Yan, ZG Zhu, HJ Cui, QR Zheng, G Su, Carbon 71, 150 (2014).
[21]
X. Wang, X. Zhang, M. Ni, L. Zou, and Z. Zeng, Appl. Phys. Lett., 97, 123103 (2010).
[22]
J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. 1996).
[23]
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
[24]
E. Rudberg, P. Salek, and Y. Luo, Nano Lett. 7, 2211 (2007).
[25]
Er-Jun Kan, Zhenyu Li, Jinlong Yang, and J. G. Hou, Appl. Phys. Lett. 91, 243116 (2007).
[26]
S. Yang and M. Kertesz, J. Phys. Chem. A. 110, 9771 (2006).
[27]
K. D. Dobbs and W. J. Hehre, J. Comput. Chem. 8, 880 (1987).
[28]
P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, and S. K. Nayak, Appl. Phys. Lett. 91, 042101 (2007).
[29]
E. L. Starostin and G. H. M. Van Hejden, Nature Materials 6, 563 (2007).
[30]
Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
[31]
J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1994).
[32]
Er-Jum Kan, Zhenyu Li, Jinlong Yang, and J. G. Hou, Appl. Phys. Lett. 91, 243116(2007).
[33]
H. Zheng and W. Duley, Phys. Rev. B 78, 155118 (2008).
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931