International Journal of Materials Science and Applications

| Peer-Reviewed |

Design for Stable Lasing of an Indirect Injection THz Quantum Cascade Laser Operating at Less Than 2 THz

Received: Jul. 04, 2017    Accepted: Jul. 17, 2017    Published: Aug. 11, 2017
Views:       Downloads:

Share This Article

Abstract

In order to realize high temperature lasing of low frequency (< 2 THz) terahertz quantum cascade lasers (THz QCLs), selective carrier injection into an upper lasing level using an indirect injection (II) scheme is an effective method for inducing population inversion. The II scheme is realized with a four-level system. However, a three-level system that operates at low applied bias voltages causes additional lasing at higher frequencies (4~5 THz). By detuning the wave functions at the three lasing levels operating at low bias voltages, we were able to operate an II scheme THz QCL at a single stable frequency. Utilizing the higher injection selectivity, achieved through an indirect scattering-assisted injection process combined with diagonal emission, we were able to demonstrate stable operation of an AlGaAs/GaAs QCL operating at 1.89 THz at temperatures up to 160 K.

DOI 10.11648/j.ijmsa.20170605.11
Published in International Journal of Materials Science and Applications ( Volume 6, Issue 5, September 2017 )
Page(s) 230-234
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Terahertz, Quantum Cascade Lasers, Indirect Injection

References
[1] T. K.-Ostmann and T. Nagatsuma, "A Review on Terahertz Communications Research," J. Infrared. Milliw. TE. 32 (2011) 143.
[2] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264 (1994) 553.
[3] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Capasso, "Terahertz semiconductor-heterostructure laser," Nature 417 (2002) 156.
[4] L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with &gt;1 W output powers," Eectron. Lett. 50 (2014) 309.
[5] X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, "High-power terahertz quantum cascade lasers with 0.23 W in continuous wave mode," AIP Advan. 6 (2016) 075210.
[6] G. Liang, T. Liu, and Q. J. Wang, "Recent Developments of Terahertz Quantum Cascade Lasers," IEEE j. sel. top. quantum electron 23 (2017) 1200118.
[7] S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. M´aty´as, C. Jirauschek, Q. Hu, and H. C. Liu, "Terahertz quantum cascade lasers operating up to~200 K with optimized oscillator strength and improved injection tunneling," Opt. Express 20 (2012) 3866.
[8] S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, "A 1.8-THz quantum cascade laser operating significantly above the temperature of hω/kB," Nat. Phys. 7 (2011) 166.
[9] M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, "Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values," Opt. Express 16 (2008) 20748.
[10] H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, "Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers," Appl. Phys. Lett. 94 (2009) 151109.
[11] T. Kubis, S. R. Mehrotra, and G. Klimeck, "Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements," Appl. Phys. Lett. 97 (2010) 261106.
[12] T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, "Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis," Appl. Phys. Lett. 100 (2012) 122110.
[13] E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, J. Appl. Phys. 111 (2012) 073111.
[14] K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, "Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy," Opt. Express 20 (2012) 20647.
[15] S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, "Delay time calculation for dual-wavelength quantum cascade lasers," J. Appl. Phys. 113 (2013) 203107.
[16] S. Khanal, J. L. Reno, and S. Kumar, "2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design," Opt. Express 23 (2015) 19689.
[17] T.-T. Lin, L. Ying, and H. Hirayama, "Threshold Current Density Reduction by Utilizing High-Al-Composition Barriers in 3.7 THz GaAs/AlxGa1-x As Quantum Cascade Lasers," Appl. Phys. Express 5 (2012) 012101.
[18] T.-T. Lin and H. Hirayama, "Improvement of operation temperature in GaAs/AlGaAs THz-QCLs by utilizing high Al composition barrier," Phys. Stat. Sol. C 10 (2013) 1430.
Cite This Article
  • APA Style

    Tsung-Tse Lin, Hideki Hirayama. (2017). Design for Stable Lasing of an Indirect Injection THz Quantum Cascade Laser Operating at Less Than 2 THz. International Journal of Materials Science and Applications, 6(5), 230-234. https://doi.org/10.11648/j.ijmsa.20170605.11

    Copy | Download

    ACS Style

    Tsung-Tse Lin; Hideki Hirayama. Design for Stable Lasing of an Indirect Injection THz Quantum Cascade Laser Operating at Less Than 2 THz. Int. J. Mater. Sci. Appl. 2017, 6(5), 230-234. doi: 10.11648/j.ijmsa.20170605.11

    Copy | Download

    AMA Style

    Tsung-Tse Lin, Hideki Hirayama. Design for Stable Lasing of an Indirect Injection THz Quantum Cascade Laser Operating at Less Than 2 THz. Int J Mater Sci Appl. 2017;6(5):230-234. doi: 10.11648/j.ijmsa.20170605.11

    Copy | Download

  • @article{10.11648/j.ijmsa.20170605.11,
      author = {Tsung-Tse Lin and Hideki Hirayama},
      title = {Design for Stable Lasing of an Indirect Injection THz Quantum Cascade Laser Operating at Less Than 2 THz},
      journal = {International Journal of Materials Science and Applications},
      volume = {6},
      number = {5},
      pages = {230-234},
      doi = {10.11648/j.ijmsa.20170605.11},
      url = {https://doi.org/10.11648/j.ijmsa.20170605.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijmsa.20170605.11},
      abstract = {In order to realize high temperature lasing of low frequency (< 2 THz) terahertz quantum cascade lasers (THz QCLs), selective carrier injection into an upper lasing level using an indirect injection (II) scheme is an effective method for inducing population inversion. The II scheme is realized with a four-level system. However, a three-level system that operates at low applied bias voltages causes additional lasing at higher frequencies (4~5 THz). By detuning the wave functions at the three lasing levels operating at low bias voltages, we were able to operate an II scheme THz QCL at a single stable frequency. Utilizing the higher injection selectivity, achieved through an indirect scattering-assisted injection process combined with diagonal emission, we were able to demonstrate stable operation of an AlGaAs/GaAs QCL operating at 1.89 THz at temperatures up to 160 K.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Design for Stable Lasing of an Indirect Injection THz Quantum Cascade Laser Operating at Less Than 2 THz
    AU  - Tsung-Tse Lin
    AU  - Hideki Hirayama
    Y1  - 2017/08/11
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijmsa.20170605.11
    DO  - 10.11648/j.ijmsa.20170605.11
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 230
    EP  - 234
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20170605.11
    AB  - In order to realize high temperature lasing of low frequency (< 2 THz) terahertz quantum cascade lasers (THz QCLs), selective carrier injection into an upper lasing level using an indirect injection (II) scheme is an effective method for inducing population inversion. The II scheme is realized with a four-level system. However, a three-level system that operates at low applied bias voltages causes additional lasing at higher frequencies (4~5 THz). By detuning the wave functions at the three lasing levels operating at low bias voltages, we were able to operate an II scheme THz QCL at a single stable frequency. Utilizing the higher injection selectivity, achieved through an indirect scattering-assisted injection process combined with diagonal emission, we were able to demonstrate stable operation of an AlGaAs/GaAs QCL operating at 1.89 THz at temperatures up to 160 K.
    VL  - 6
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Terahertz Quantum Device Laboratory, Center for Advanced Photonics, RIKEN, Sendai, Japan

  • Terahertz Quantum Device Laboratory, Center for Advanced Photonics, RIKEN, Sendai, Japan

  • Section