| Peer-Reviewed

Effect of Cold Work on Creep Rupture Strength of Alloy263

Received: 13 September 2017    Accepted: 22 September 2017    Published: 13 October 2017
Views:       Downloads:
Abstract

Creep rupture strength and the microstructure change during creep deformation of pre-strained Alloy263 were investigated. Creep rupture tests were conducted at 1023, 1073 K at stress range from 120 to 250 MPa. Creep strength of the pre-strained samples was higher than that of the non-strained samples. However, rupture strain of the pre-strained samples was much lower than that of non-strained samples. In the pre-strained samples, Ni3(Al, Ti)- γ’ and M23C6 inside of the grains precipitated finer than the non-strained samples compared at the same creep time. At grain boundaries, the grain boundary shielding ratio covered by M23C6 carbide showed almost same value among each samples. However, diameter of the M23C6 particle decreased in pre-strained samples. Furthermore, dynamic recrystallization was promoted and precipitation free zone (PFZ) was formed around Ni3Ti-η phase at grain boundary. These observations show that increase in creep-strength of pre-strained sample was due to increase in precipitation strengthening in the grain by fine precipitation of γ’ and M23C6. In addition, resistance against crack propagation at grain boundary increased by the fine precipitation of grain boundary M23C6 even though formation of PFZ and promotion of the dynamic recrystallization. It is estimated that Orowan-stress of pre-strained samples was 1.7 times higher than non-strained samples. It is considered that these strengthening effects overcome the weakening effects in the pre-strained samples.

Published in International Journal of Materials Science and Applications (Volume 6, Issue 5)
DOI 10.11648/j.ijmsa.20170605.16
Page(s) 260-268
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

A-USC, Alloy263, Cold-Work, Creep Strength, Microstructure, Precipitation Strengthening, Carbides, γ’

References
[1] International Energy Agency, World Energy Outlook 2009 (2009).
[2] R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitails, R. Purgert, U. S. program on materials technology for ultra-supercritical coal power plants, JMEPEG 14 (2005) 281-292.
[3] M. Fukuda, Advanced USC, The Thermal and Nuclear Power 62 (2011) 731-741 (in Japanese).
[4] K. Muroki, IHI Engineering Review Vol. 55 No. 4 (2015) 28-31 (in Japanese).
[5] S. Takano, Y. Aoki, K. Kubushiro, S. Tomiyama, H. Nakagawa, Development of 700 degree celsius class advanced ultra-supercritical boiler, IHI Engineering Review 49 (2009) 185-191 (in Japanese).
[6] K. Kubushiro, K. Nomura, T. Matsuoka, H. Nakagawa, K. Muroki, Development of boiler technology for 700°C A-USC plant, IHI Engineering Review 55 (2015) 81-91 (in Japanese).
[7] H. C. Yang, L. S. Wang, D. P. Wang, S. Y. Mao, X. C. Yang, X. H. Lai, J. B. Yang, W. Yang, Discussion of Delivered Condition Specified in ASME CODE 2702 on INCONEL 740H Used for A-USC Boiler, Advances in materials technology for fossil power plants 7th international conference, Waikoloa, Hawaii (2013) 276-280.
[8] S. Chomette, J-M Gentzbittel, B. Viguier, Creep behavior of as received, aged and cold worked INCONEL 617 at 850°C and 950°C, Journal of Nuclear Materials 399 (2010) 266-274.
[9] K. Mino, A. Ohtomo, Y. Saiga, Effect of Grain Boundary Migration and Recrystallization on the Creep Strength of Inconel 617, Tetsu to Hagane Vol. 63 (1977) 2372-2380 (in Japanese).
[10] K. Kubushiro, T, Matsuoka, Y. Ohkuma, H. Nakagawa and H. Aoki, Development of welding and fabrication technologies in advanced USC boiler, Advances in materials technology for fossil power plants 7th international conference, Waikoloa, Hawaii (2013) 1047-1058.
[11] F. Mueller, A. Scholz, C. Berger, R. U. Husemann, Influence of cold working on creep and creep rupture behavior of materials for super-heater tubes of modern high-end boilers and for built-in sheets in gas turbines, creep and fracture in high temperature components ECCC creep conference (2009) 1236-1246.
[12] N. Kanno, K. Yoshimura, N. Takata, I. Tarigan and M. Takeyama, Mechanical properties of austenitic heat-resistant Fe-20Cr-30Ni-2Nb steel at ambient temperature, Mater. Sci. Eng. A 662 (2016) 551-563
[13] W. Wen-juan, H. Guang-wei, Influence of Aging on Treatment on Precipitation Behavior of  Phase in Ni-Co-Cr Alloy, D. Bo, Journal of Iron and Steel Research, INTERNATIONAL 17 (2010) 64-69.
[14] Danflou H. L, Marty M, Walder A. Formations of Serrated Grain Boundaries and Their Effect on the Mechanical Properties in a P/M Nickel Base Superalloy, Superalloys 1992 (1992) 63-72.
[15] T. Nakazawa, H. Annpo, The Effect of Some Factors on the Creep Behavior of Type 304 Stainless Steel, Tetsu to Hagane Vol. 63 (1977) 82-91 (in Japanese).
[16] M. P. Jackson, R. C. Reed, Heat treatment of U720Li: the effect of microstructure of properties, Materials Science and Engineering A 259(1999) 85-97.
[17] M. Kato, Introduction to the theory of dislocations (1999).
[18] M. Takeyama, K. Kawasaki, T. Matsuo, R. Tanaka, Effect of Grain Boundary Precipitates on High Temperature Creep Properties of Ni-20Cr-Nb-W Alloys, Tetsu to Hagane Vol. 72 (1986) 1605-1612 (in Japanese).
[19] A. M. Elbatahgy, T. Matsuo, K. Kikuchi, Grain Boundary Precipitation Strengthening due to g’ Phase in High Temperature Creep of a Ni-base Superalloy, Tetsu to Hagane Vol. 76 (1990) 765-774 (in Japanese).
[20] K. Kurata, N. Takata, T. Matsuo, M. Takeyama, Effect of Grain Boundary Laves Phase on Creep Resistance of Fe-20Cr-30Ni-2Nb Austenitic Heat Resistant Steels, Report of the 123 rd Committee on Heat-Resisting Materials and Alloys, Japan Society for the Promotion of Science, Vol. 49 (2008) 379-389 (in Japanese).
[21] T. Imanuel, T. Takata, M. Takeyama, Influence of Grain Boundary Fe2Nb Laves Phase in Creep Properties of Fe-20Cr-30Ni-2Nb Austenitic Heat Resistant Steels at 973K, Report of the 123 rd Committee on Heat-Resisting Materials and Alloys, Japan Society for the Promotion of Science, Vol. 52 (2011) 63-72.
[22] N. Tsuji, Formation Mechanisms of Ultrafine Grained Structures in Severe Plastic Deformation of Metallic Materials, Tetsu-to-Hagane Vol. 94 (2008) 8-15 (in Japanese).
[23] A. Belyakov, H. Miura, T. Sakai, Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel, Materials Science and Engineering A255 (1998) 139-147.
[24] N. Dudova, A. Belyakov, T. Sakai, R. Kaibyshev, Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working, Acta Materialia 58 (2010) 3624-3632.
Cite This Article
  • APA Style

    Naoya Kanno, Yoshiki Shioda, Keiji Kubushiro. (2017). Effect of Cold Work on Creep Rupture Strength of Alloy263. International Journal of Materials Science and Applications, 6(5), 260-268. https://doi.org/10.11648/j.ijmsa.20170605.16

    Copy | Download

    ACS Style

    Naoya Kanno; Yoshiki Shioda; Keiji Kubushiro. Effect of Cold Work on Creep Rupture Strength of Alloy263. Int. J. Mater. Sci. Appl. 2017, 6(5), 260-268. doi: 10.11648/j.ijmsa.20170605.16

    Copy | Download

    AMA Style

    Naoya Kanno, Yoshiki Shioda, Keiji Kubushiro. Effect of Cold Work on Creep Rupture Strength of Alloy263. Int J Mater Sci Appl. 2017;6(5):260-268. doi: 10.11648/j.ijmsa.20170605.16

    Copy | Download

  • @article{10.11648/j.ijmsa.20170605.16,
      author = {Naoya Kanno and Yoshiki Shioda and Keiji Kubushiro},
      title = {Effect of Cold Work on Creep Rupture Strength of Alloy263},
      journal = {International Journal of Materials Science and Applications},
      volume = {6},
      number = {5},
      pages = {260-268},
      doi = {10.11648/j.ijmsa.20170605.16},
      url = {https://doi.org/10.11648/j.ijmsa.20170605.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20170605.16},
      abstract = {Creep rupture strength and the microstructure change during creep deformation of pre-strained Alloy263 were investigated. Creep rupture tests were conducted at 1023, 1073 K at stress range from 120 to 250 MPa. Creep strength of the pre-strained samples was higher than that of the non-strained samples. However, rupture strain of the pre-strained samples was much lower than that of non-strained samples. In the pre-strained samples, Ni3(Al, Ti)- γ’ and M23C6 inside of the grains precipitated finer than the non-strained samples compared at the same creep time. At grain boundaries, the grain boundary shielding ratio covered by M23C6 carbide showed almost same value among each samples. However, diameter of the M23C6 particle decreased in pre-strained samples. Furthermore, dynamic recrystallization was promoted and precipitation free zone (PFZ) was formed around Ni3Ti-η phase at grain boundary. These observations show that increase in creep-strength of pre-strained sample was due to increase in precipitation strengthening in the grain by fine precipitation of γ’ and M23C6. In addition, resistance against crack propagation at grain boundary increased by the fine precipitation of grain boundary M23C6 even though formation of PFZ and promotion of the dynamic recrystallization. It is estimated that Orowan-stress of pre-strained samples was 1.7 times higher than non-strained samples. It is considered that these strengthening effects overcome the weakening effects in the pre-strained samples.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Effect of Cold Work on Creep Rupture Strength of Alloy263
    AU  - Naoya Kanno
    AU  - Yoshiki Shioda
    AU  - Keiji Kubushiro
    Y1  - 2017/10/13
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijmsa.20170605.16
    DO  - 10.11648/j.ijmsa.20170605.16
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 260
    EP  - 268
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20170605.16
    AB  - Creep rupture strength and the microstructure change during creep deformation of pre-strained Alloy263 were investigated. Creep rupture tests were conducted at 1023, 1073 K at stress range from 120 to 250 MPa. Creep strength of the pre-strained samples was higher than that of the non-strained samples. However, rupture strain of the pre-strained samples was much lower than that of non-strained samples. In the pre-strained samples, Ni3(Al, Ti)- γ’ and M23C6 inside of the grains precipitated finer than the non-strained samples compared at the same creep time. At grain boundaries, the grain boundary shielding ratio covered by M23C6 carbide showed almost same value among each samples. However, diameter of the M23C6 particle decreased in pre-strained samples. Furthermore, dynamic recrystallization was promoted and precipitation free zone (PFZ) was formed around Ni3Ti-η phase at grain boundary. These observations show that increase in creep-strength of pre-strained sample was due to increase in precipitation strengthening in the grain by fine precipitation of γ’ and M23C6. In addition, resistance against crack propagation at grain boundary increased by the fine precipitation of grain boundary M23C6 even though formation of PFZ and promotion of the dynamic recrystallization. It is estimated that Orowan-stress of pre-strained samples was 1.7 times higher than non-strained samples. It is considered that these strengthening effects overcome the weakening effects in the pre-strained samples.
    VL  - 6
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Materials Department, Research Laboratory, IHI Corporation, Yokohama, Japan

  • Materials Department, Research Laboratory, IHI Corporation, Yokohama, Japan

  • Materials Department, Research Laboratory, IHI Corporation, Yokohama, Japan

  • Sections