American Journal of Water Science and Engineering

| Peer-Reviewed |

Quantitative Estimation of Recharge Potentialities of Shallow Aquifers in Senegal River Delta Hydrosystem

Received: Apr. 02, 2019    Accepted: May 23, 2019    Published: Jun. 26, 2019
Views:       Downloads:

Share This Article

Abstract

The objective of this paper is to assess quantitatively the potential recharge of shallow aquifers in the Senegal River delta in context of semi-arid climate, of massive irrigation development and of modification of hydrologic and hydrogeological characters after dams building. Quantitative estimation of recharge potentialities have been based on hydrological balance and groundwater table fluctuation calculations and on isotopic tracers techniques of the water molecule (δ18O, δ2H and 3H). This different methodological approaches used to estimate recharge rates have been useful, valuable and complementary. They give results fairly homogeneous and very interesting with indications accurate enough on recharge rates and on recharge spatio-temporal variations in shallow aquifers in alluvial plain (rate varying between 0-37% of annual rainfall) and dunes formations (rate varying between 0-44% of annual rainfall). Results indicate that recharge variations in term of proportions and of distribution are not only depending of volume and frequency rainfall or groundwater depth but also depending of soil and subsoil surface conditions, human activities (water withdraw, irrigation, market gardening, etc.) and evaporative demand. This recharge knowledge in terms of proportions and distribution in shallow aquifers is often very useful to propose groundwater resources management model and to define strategies to exploit them sustainably especially when groundwater resources are very unproductive and often very salty as in Senegal River delta.

DOI 10.11648/j.ajwse.20190502.12
Published in American Journal of Water Science and Engineering ( Volume 5, Issue 2, June 2019 )
Page(s) 47-61
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Recharge Rate, Hydrological Balance, Groundwater Fluctuation, Isotopic Tracers, Shallow Aquifers, Senegal River Delta Hydrosystem

References
[1] Cook, P. G., Walker, G. R., Jolly, I. D. (1989). Spatial variability of groundwater recharge in a semi-arid region. J Hydrol 111: 195–212.
[2] Le Gal La Salle, C., Marlin, C., Leduc, C., Taupin, J. D., Massault, M., & Favreau, G. (2001). Renewal rate estimation of groundwater based on radioactive tracers (3H, 14C) in an unconfined aquifer in a semi-arid area, Iullemeden Basin, Niger. Journal of Hydrology, 254 (1–4), 145-156.
[3] Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006): Global synthesis of groundwater recharge in semi-arid and arid regions. Hydrological Processes, 20 (15), 3335-3370.
[4] Leduc, C. (2003). Dynamiques hydrologiques en milieu semi aride (Habilitation à Diriger des Recherches). Université de Montpellier II, (81 p). France.
[5] Allison, G. B. (1988). A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge. NATO ASI Ser., (Ser C 222), 49-72.
[6] Simmers, I. (ed.) (1988). Estimation of natural groundwater recharge. Reidel, Boston, 510 pp.
[7] Lerner, D. N., Issar, A. S., Simmers, I. (1990). Groundwater recharge, a guide to understanding and estimating natural recharge. International Association of Hydrogeologists, Kenilworth, Rep 8, 345 pp.
[8] Allison, G. B., Gee, G. W. and S. W. Tyler. (1994). Vadose-zone techniques for estimating groundwater recharge in arid and semi-arid regions. Soil Science Society of America 578 Journal 58, 6-14.
[9] Scanlon, B. R., Healy, R. W., & Cook, P. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10 (1), 18-39.
[10] Kinzelbach, W., Aeschbach, W., Alberich, C., Goni, I. B., Beyerle, U., Brunner, P., Chiang, W. H., Rueedi, J., Zoellman, K. (2002). A Survey of Methods for Groundwater Recharge in Arid and Semi-Arid Regions, Early Warning and Assessment Report Series, UNEP/DEWA/RS.02-2. United Nations Environment Programme: Nairobi, ISBN 92-80702131-80702133.
[11] Besbes, M., Dethomme J. P. & De Marsily G., (1978). Estimating recharge from ephemeral streams in arid regions: a case study at Kairouan, Tunisia. Water Resour. Res. 14, 281290.
[12] Gee, G. W., and Hillel, D. (1988). Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol. Proc.2, 255-266.
[13] Gaye, C. B (1990). Etude isotopique et géochimique du mode de recharge par les pluies et de la décharge évaporatoire des aquifères libres sous climat semi-aride au Nord du Sénégal. Thèse Etat, Univ. Dakar.
[14] Allison, G. B., Gee, G. W. and Tyler, S. W. (1994). Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Science Society of America 578 Journal 58, 6-14.
[15] Stephens, D. B. (1994). A perspective on diffuse natural recharge mechanisms in areas of low precipitation. Soil Sci Soc Am J 58: 40–48.
[16] Lerner, D. N. (1997). Groundwater recharge. In: Saether OM, de Caritat P (eds) Geochemical processes, weathering and groundwater recharge in catchments. AA Balkema, Rotterdam, pp 109–150.
[17] Simmers, I. (ed) (1997). Recharge of phreatic aquifers in (semi-) arid areas. AA Balkema, Rotterdam, 277 pp.
[18] Bredenkamp, D. B., Botha, L. J., van Tonder, G. J. and van Rensburg, H. J. (1995). Manual on Quantitative Estimation of Groundwater Recharge and Aquifer Storativity. Water Research Commission Report TT73/95, Pretoria. 407 pp.
[19] Stephens, D. B. (1996). Estimation of infiltration and recharge for environmental site assessment. API Publ 4643. Health and Environmental Sciences Department, Albuquerque, New Mexico.
[20] Sukhija, B. S., Nagabhushanam, P., Reddy, D. V. (1996). Groundwater recharge in semi-arid regions of India: an overview of results obtained using tracers. Hydrogeol J 4 (3): 50–71.
[21] Audibert, M. (1970). «Delta du fleuve Sénégal. Étude hydrogéologique. Projet hydro-agricole du bassin du fleuve Sénégal». Tome III: hydrogéologie, Tome IV: drainabilité, Rapport Projet AFR/REG 61. FAO/OERS.
[22] Illy, P. (1973). Étude hydrogéologique de la vallée du fleuve Sénégal. Projet hydro agricole du bassin du fleuve Sénégal. Rapport RAF/65061. p158.
[23] Tricart, J. (1961). Notice explicative de la carte géomorphologique du delta du Sénégal. Paris mémoire BRGM. n°8. 137.3 cartes en couleurs au 1/100000.
[24] Diaw, M. (2008). Approche hydrochimique et isotopique de la relation eau de surface/nappe et du mode de recharge de la nappe alluviale dans l’estuaire et la basse vallée du fleuve Sénégal: Identification des zones inondées par Télédétection et par traçage isotopique», Mem. Doctorat de Thèse 3e cycle FST/UCAD de Dakar, 210 p.
[25] Diaw, M., Faye, S., Maloszewski, P., Stichler, W. (2012). Isotopic and geochemical characteristics of groundwater in the Senegal River delta aquifer: implication of recharge and flow regime; Journal Environ. Earth Sci. DOI 10.1007/s12665-010-0710-4 (article online).
[26] PASMI. (2008). Notice explicative de la carte géologique du Sénégal à 1/500000, feuilles nord-ouest, nord-est et sud-ouest, Ministère des Mines, de l’Industrie, de l’Agro-Industrie et des PME, Direction des Mines et de la Géologie, Dakar.
[27] Epstein, S., Mayeda, T. K. (1953). Variations of 18O content of waters from natural sources. Geochimical et Cosmochimical Acta. 4: 213-224.
[28] Coleman, M. L., Shepherd, T. J., Durham, J. J., Rouse, J. E., Moore, G. R. (1982). Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry 54: 993-995.
[29] Thatcher, L., Janzer, V. J., Edwards, R. W. (1977). Methods for determination of radioactive substances in water and fluvial sediments. In: Techniques of Water Resources Investigations of the US Geological Survey. US Government Printing Office. Washington. DC. Chapter A5: 79-81.
[30] De Vries, J., & Simmers, I. (2002). Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal, 10 (1), 5-17.
[31] Camus, H. et Debuisson, J. (1964). Etude hydrogéologique des terrains anciens du Sénégal Oriental. Campagne 1962-1963. Rapport BRGM, Dakar. 64-06, 143p.
[32] Mall, I. (2017). Evaluation des ressources en eau dans le socle birrimien du Senegal oriental: approts des outils geochimiquess, geostatistiques, de la Teledection et des SIG, these de doctorat, universite Cheikh anta Diop, 213 pages.
[33] Thornthwaite, C. W. (1948). An approach towards a rational classification of climate, Geograph. Rev. 38, 55-94.
[34] Meinzer, O. E. and Steams N. D. (1928). A Study of Groundwater in the Pomperaug Basin, Connecticut, with Special Reference to Intake and Discharge. U. S. Geological Survey Water Supply Paper 597-B.
[35] Hall, D. W., Risser, D. W. (1993). Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County, Pennsylvania. Water Resour Bull 29: 55–76.
[36] Healy, R., Cook, P. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal, 10 (1), 91-109.
[37] Abdulrazzak, M. J., Sorman, A. U., Alhames, A. S. (1989). Water balance approach under extreme arid conditions – a case study of Tabalah Basin, Saudi Arabia. Hydrol Proc 3: 107–122 Allison GB, Stone WJ, Hughes MW (1985) Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride. J Hydrol 76: 1–26.
[38] Rasmussen, W. C., Andreasen, G. E. (1959). Hydrologic budget of the Beaverdam Creek Basin, Maryland. US Geol Surv Water-Supply Pap 1472: 106.
[39] OMVS/USAID. (1990). « Rapport de synthèse hydrogéologique du delta du fleuve Sénégal ». Projet OMVS/USAID 625-0958. Eaux souterraines. Rapport final. Dakar. Sénégal. Volume II. p73 et annexes.
[40] Fontes, J. Ch., Edmunds, W. M. (1989). The use of environmental isotope techniques in arid zone hydrology: a critical review. Technical documents in hydrology, IHP-III Project 5. 2, UNESCO, Paris, 75 pp
[41] Adanu, E. A. (1991). Source and recharge of groundwater in the basement terrain in the Zaria-Kaduaa area, Nigeria: applying stable isotopes. J. Afr. Earth Sci., 13 (2): 229-234.
[42] Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J. Hydrol., 139: 27-48.
[43] Vrbka, P., Bussert, R., Abdalla, O. A. E. (2008). Groundwater in north and central Sudan. In: Adelana, S. M. A., MacDonald, A. M. (Ed.), Applied Groundwater Studies in Africa. IAH Selected Papers in Hydrogeology 13, Taylor & Francis, Amsterdam. 337-349.
[44] Rueedi, J., Brennwald, M. S., Purtschert, R., Beyerle, U., Hofer, M., Kipfer, R. (2005). Estimating amount and spatial distribution of groundwater recharge in the Iullemmeden basin (Niger) based on 3H, 3He and CFC-11 measurements. Hydrol. Process. 19, 3285–3298.
[45] Goni, I. B. (2008). Estimating groundwater recharge in the southwestern sector of the Chad basin using chloride data. In: Adelana, S. M. A., MacDonald, A. M. (Ed.), Applied Groundwater Studies in Africa. IAH Selected Papers in Hydrogeology 13, Taylor & Francis, Amsterdam. 323-336.
[46] Zimmermann, U., Ehhlat, D., and Munnich, K. W. (1967). Soil-water movement and evaportation changes in the isotopic composition of the water, In: Proceeding of the symposium of isotopes in Hydrology, Vienna, 1966, IAEA, Vienna, Austria, 567-584.
[47] Fontes, J. C. (1985). Some considerations on groundwater dating using environmental isotopes. Hydrogeology in the service of man (coll. / conf.), Cambridge, IAH, p. 118-154.
[48] Allison, G. B., Barnes, C. J., Hughes, M. W., Leaney, F. W. (1984). The effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Isotope Hydrology 1983, Proc. Symp. IAEA, IAEASM-270/20, IAEA, Vienna, pp 105–123.
[49] Travi, Y., Gac, J. Y., Fontes, J. C., Fritz, B. (1987). Reconnaissance chimique et isotopique des eaux de pluies du Sénégal. Géodynamique 2 (1): 43 – 53.
[50] Jeuken, B. M. (2004). A hydrogeochemical study of the surficial aquifers south of Alice Springs. Honours Thesis, Flinders University of SA, 2004.
[51] Allison, G. B., Hughes, M. W. (1977). The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J. Hydrol. 60: 157–173.
[52] Clark, I. and Fritz, P. (1997). Environmental isotopes in hydrogeology. Lewis publisher. USA. 328p.
[53] Egboka, B. C. E., Cherry, J. A., Farvolden, R. N., Frind, E. O. (1983). Migration of contaminants in groundwater at a landfill: a case study. 3. Tritium as an indicator of dispersion and recharge. J Hydrol 63: 51–80.
[54] Robertson, W. D., Cherry, J. A. (1989). Tritium as an indicator of recharge and dispersion in a groundwater system in central Ontario. Water Resour Res 25: 1097–1109.
[55] Buckley, R. L., Rabun, III R. L., and Heath, M. (2016). Analysis of a Global Database Containing Tritium in Precipitation February 17, 2016 SRNL-STI-2016-00071. Served as summer intern through Savannah River Tritium Enterprise 1-29 pp.
[56] Maloszewski, P., Zuber, A. (1982). Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. Models and their applicability. J. Hydrol. 57, 207–231.
[57] Leduc, C., Taupin, J. D., Le Gal La Salle, C. (1996). Estimation de la recharge de la nappe phréatique du Continental terminal (Niamey. Niger) à partir des teneurs en tritium. C. R. Acad. Sci. Paris. Série IIa 323. 599–605.
Cite This Article
  • APA Style

    Moctar Diaw, Ibrahima Mall, Marc Le Blanc, Serigne Faye, Yves Travi. (2019). Quantitative Estimation of Recharge Potentialities of Shallow Aquifers in Senegal River Delta Hydrosystem. American Journal of Water Science and Engineering, 5(2), 47-61. https://doi.org/10.11648/j.ajwse.20190502.12

    Copy | Download

    ACS Style

    Moctar Diaw; Ibrahima Mall; Marc Le Blanc; Serigne Faye; Yves Travi. Quantitative Estimation of Recharge Potentialities of Shallow Aquifers in Senegal River Delta Hydrosystem. Am. J. Water Sci. Eng. 2019, 5(2), 47-61. doi: 10.11648/j.ajwse.20190502.12

    Copy | Download

    AMA Style

    Moctar Diaw, Ibrahima Mall, Marc Le Blanc, Serigne Faye, Yves Travi. Quantitative Estimation of Recharge Potentialities of Shallow Aquifers in Senegal River Delta Hydrosystem. Am J Water Sci Eng. 2019;5(2):47-61. doi: 10.11648/j.ajwse.20190502.12

    Copy | Download

  • @article{10.11648/j.ajwse.20190502.12,
      author = {Moctar Diaw and Ibrahima Mall and Marc Le Blanc and Serigne Faye and Yves Travi},
      title = {Quantitative Estimation of Recharge Potentialities of Shallow Aquifers in Senegal River Delta Hydrosystem},
      journal = {American Journal of Water Science and Engineering},
      volume = {5},
      number = {2},
      pages = {47-61},
      doi = {10.11648/j.ajwse.20190502.12},
      url = {https://doi.org/10.11648/j.ajwse.20190502.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajwse.20190502.12},
      abstract = {The objective of this paper is to assess quantitatively the potential recharge of shallow aquifers in the Senegal River delta in context of semi-arid climate, of massive irrigation development and of modification of hydrologic and hydrogeological characters after dams building. Quantitative estimation of recharge potentialities have been based on hydrological balance and groundwater table fluctuation calculations and on isotopic tracers techniques of the water molecule (δ18O, δ2H and 3H). This different methodological approaches used to estimate recharge rates have been useful, valuable and complementary. They give results fairly homogeneous and very interesting with indications accurate enough on recharge rates and on recharge spatio-temporal variations in shallow aquifers in alluvial plain (rate varying between 0-37% of annual rainfall) and dunes formations (rate varying between 0-44% of annual rainfall). Results indicate that recharge variations in term of proportions and of distribution are not only depending of volume and frequency rainfall or groundwater depth but also depending of soil and subsoil surface conditions, human activities (water withdraw, irrigation, market gardening, etc.) and evaporative demand. This recharge knowledge in terms of proportions and distribution in shallow aquifers is often very useful to propose groundwater resources management model and to define strategies to exploit them sustainably especially when groundwater resources are very unproductive and often very salty as in Senegal River delta.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Quantitative Estimation of Recharge Potentialities of Shallow Aquifers in Senegal River Delta Hydrosystem
    AU  - Moctar Diaw
    AU  - Ibrahima Mall
    AU  - Marc Le Blanc
    AU  - Serigne Faye
    AU  - Yves Travi
    Y1  - 2019/06/26
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ajwse.20190502.12
    DO  - 10.11648/j.ajwse.20190502.12
    T2  - American Journal of Water Science and Engineering
    JF  - American Journal of Water Science and Engineering
    JO  - American Journal of Water Science and Engineering
    SP  - 47
    EP  - 61
    PB  - Science Publishing Group
    SN  - 2575-1875
    UR  - https://doi.org/10.11648/j.ajwse.20190502.12
    AB  - The objective of this paper is to assess quantitatively the potential recharge of shallow aquifers in the Senegal River delta in context of semi-arid climate, of massive irrigation development and of modification of hydrologic and hydrogeological characters after dams building. Quantitative estimation of recharge potentialities have been based on hydrological balance and groundwater table fluctuation calculations and on isotopic tracers techniques of the water molecule (δ18O, δ2H and 3H). This different methodological approaches used to estimate recharge rates have been useful, valuable and complementary. They give results fairly homogeneous and very interesting with indications accurate enough on recharge rates and on recharge spatio-temporal variations in shallow aquifers in alluvial plain (rate varying between 0-37% of annual rainfall) and dunes formations (rate varying between 0-44% of annual rainfall). Results indicate that recharge variations in term of proportions and of distribution are not only depending of volume and frequency rainfall or groundwater depth but also depending of soil and subsoil surface conditions, human activities (water withdraw, irrigation, market gardening, etc.) and evaporative demand. This recharge knowledge in terms of proportions and distribution in shallow aquifers is often very useful to propose groundwater resources management model and to define strategies to exploit them sustainably especially when groundwater resources are very unproductive and often very salty as in Senegal River delta.
    VL  - 5
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Geology, Faculty of Sciences and Technique, Cheikh Anta DIOP University, Dakar, Senegal; Faculty of Sciences, University of Avignon, Avignon, France

  • Department of Geology, Faculty of Sciences and Technique, Cheikh Anta DIOP University, Dakar, Senegal

  • Faculty of Sciences, University of Avignon, Avignon, France

  • Department of Geology, Faculty of Sciences and Technique, Cheikh Anta DIOP University, Dakar, Senegal

  • Faculty of Sciences, University of Avignon, Avignon, France

  • Section