| Peer-Reviewed

Influence of Annealed Temperature on Optical Properties of Nanostructured CdO Thin Films

Received: 19 November 2016     Accepted: 12 January 2017     Published: 13 October 2017
Views:       Downloads:
Abstract

Nanostructures of cadmium oxide (CdO) thin films were deposited by sol-gel dip coating technique on glass and Si substrates. X-ray diffraction patterns and selected area electron diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. Transmission Electron Micrograph (TEM) of the film revealed the manifestation of nano CdO phase with average particle size lies in the range 1.6 nm to 9.3 nm. From the measurements of transmittance spectra of the films the direct allowed bandgap values have been calculated and they lie in the range 2.85 eV to 3.69 eV with high transparency (~ 75% in the wavelength range 500 - 800 nm) of the film. Particle size have also been calculated from the shift of bandgap from that of bulk value for those films for which the particles are compearable to Bohr exitonic radius.

Published in American Journal of Optics and Photonics (Volume 5, Issue 2)
DOI 10.11648/j.ajop.20170502.12
Page(s) 19-23
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

CdO Thin Films, Sol-gel, TEM, XRD, Optical Properties

References
[1] A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science 294, 1317 (2001).
[2] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292, 1897 (2001).
[3] Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, Science 291, 851 (2001).
[4] R. F. Pease, in Nanostructures and mesoscopic systems, edited by W. P. Kirk and M. A. Reed (Academic, NewYork, 1992), p. 37.
[5] J. H. Schon, O. Schenker, B. Batlogg, Thin Solid Films, 385, 271 (2001).
[6] S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, J. Mater. Res. 14, 4503 (1993).
[7] H. J. Blythe, V. M. Fedosynk, O. I. Kasyutich, and W. Schwarzacher, J. Magn. Magn. Matter. 208, 251 (2000).
[8] G. Phatak, and R. Lal, Thin Solid Films 245, 17 (1994).
[9] K. Gurumurugan, D. Mangalaraj, and S. K. Narayandass, Thin Solid Films 251, 7 (1994).
[10] G. Sanatana, A. M. Acevedo, O. Vigil, F. Cruze, G. Contreras-puente, and L. Vaillant, Superficiesy Vacio 9, 300 (1999).
[11] A. Verkey, and A. F. Fort, Thin Solid Films 239,211 (1994).
[12] A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R.P.H. Chang, and T.J. Marks, MRS Bull. 25, 45 (2000).
[13] M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, Appl. Phys. Lett. 78, 2342 (2001).
[14] N. Ueda, H. Meada, H. Hosono, and H. Kawazoe, J. Appl. Phys. 84, 6174 (1998).
[15] P. K. Ghosh, R. Maity, K. K. Chattopadhyay, Sol. Energy Mat. & Sol. Cells 81, 279 (2004).
[16] S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, S. H. Risbud, J. Appl. Phys. 85 2861 (1999).
[17] B. D. Yao, Y. F. Chan, N. Wang, Appl. Phys. Lett., 81, 757 (2002).
[18] B. Liu, H. C. Zeng, J. Am. Chem. Soc. 1254430 (2003).
[19] L. Guo, Y. L. Ji, H. Xu, P. Simon, Z. Wu, J. Am. Chem. Soc. 124, 14864 (2002).
[20] A. B. M. A. Ashrafi, H. Kumano, I. Suemune, Y. W. Ok, T. Y. Seong, J. Crys. Growth, 237-239, 518 (2002).
[21] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 291, 1947 (2001).
[22] JCPDS Powder Diffraction file card5 – 0640.
[23] J. C. Manifacier, M. Demurcia, J. P. Fillard and E. Vicario, Thin Solid Films 41 127 (1977).
[24] Optical Processes in Semiconductors, Pankove, Prentice-Hall. Inc., (1971).
[25] Y. S. Yuang, F. Y. Chen, Y. Y. Lee and C. L. Liu, Jpn. J. Appl. Phys. 76, 3041 (1994).
[26] A. D. Yoffe, Adv. In Phys. 42, 173 (1993).
Cite This Article
  • APA Style

    Pradip Kumar Ghosh. (2017). Influence of Annealed Temperature on Optical Properties of Nanostructured CdO Thin Films. American Journal of Optics and Photonics, 5(2), 19-23. https://doi.org/10.11648/j.ajop.20170502.12

    Copy | Download

    ACS Style

    Pradip Kumar Ghosh. Influence of Annealed Temperature on Optical Properties of Nanostructured CdO Thin Films. Am. J. Opt. Photonics 2017, 5(2), 19-23. doi: 10.11648/j.ajop.20170502.12

    Copy | Download

    AMA Style

    Pradip Kumar Ghosh. Influence of Annealed Temperature on Optical Properties of Nanostructured CdO Thin Films. Am J Opt Photonics. 2017;5(2):19-23. doi: 10.11648/j.ajop.20170502.12

    Copy | Download

  • @article{10.11648/j.ajop.20170502.12,
      author = {Pradip Kumar Ghosh},
      title = {Influence of Annealed Temperature on Optical Properties of Nanostructured CdO Thin Films},
      journal = {American Journal of Optics and Photonics},
      volume = {5},
      number = {2},
      pages = {19-23},
      doi = {10.11648/j.ajop.20170502.12},
      url = {https://doi.org/10.11648/j.ajop.20170502.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20170502.12},
      abstract = {Nanostructures of cadmium oxide (CdO) thin films were deposited by sol-gel dip coating technique on glass and Si substrates. X-ray diffraction patterns and selected area electron diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. Transmission Electron Micrograph (TEM) of the film revealed the manifestation of nano CdO phase with average particle size lies in the range 1.6 nm to 9.3 nm. From the measurements of transmittance spectra of the films the direct allowed bandgap values have been calculated and they lie in the range 2.85 eV to 3.69 eV with high transparency (~ 75% in the wavelength range 500 - 800 nm) of the film. Particle size have also been calculated from the shift of bandgap from that of bulk value for those films for which the particles are compearable to Bohr exitonic radius.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Influence of Annealed Temperature on Optical Properties of Nanostructured CdO Thin Films
    AU  - Pradip Kumar Ghosh
    Y1  - 2017/10/13
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajop.20170502.12
    DO  - 10.11648/j.ajop.20170502.12
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 19
    EP  - 23
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20170502.12
    AB  - Nanostructures of cadmium oxide (CdO) thin films were deposited by sol-gel dip coating technique on glass and Si substrates. X-ray diffraction patterns and selected area electron diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. Transmission Electron Micrograph (TEM) of the film revealed the manifestation of nano CdO phase with average particle size lies in the range 1.6 nm to 9.3 nm. From the measurements of transmittance spectra of the films the direct allowed bandgap values have been calculated and they lie in the range 2.85 eV to 3.69 eV with high transparency (~ 75% in the wavelength range 500 - 800 nm) of the film. Particle size have also been calculated from the shift of bandgap from that of bulk value for those films for which the particles are compearable to Bohr exitonic radius.
    VL  - 5
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Abhedananda Mahavidyalaya, Sainthia, Birbhum, West Bengal, India

  • Sections