Faba bean (Vicia faba L.) is a multi-purpose crop owing to its immense economic and ecological benefits. Genetic variability assessment for agronomic traits is a crucial step in improving the yield and yield components of the crop. Phosphorus deficiency seriously affects the yield of faba bean. The present study was conducted to evaluate the genotypic variability of faba bean for agronomic traits. Twenty and 12 genotypes, in the field and greenhouse respectively, were planted under two P fertilizer regimes (0 and 46kg/ha). Analysis of variance indicated highly significant (P<0.01) genotypic variation for most of the agronomic traits under both field and greenhouse; while grain yield (GY), days to fifty percent flowering (DFF), number of pods per plant (NPP) and days to 90% maturity (DNM) had significant genotype by location interaction. The agronomic performance of P-unfertilized (P-) treatments was significantly reduced; with the effect ranging from -4.6% for DNM to 20.3% for NPP in the field; and from -3.6% for DFF to 21.6% for shoot dry weight per plant (SDWP) in the greenhouse. Correlation analysis indicated that most traits were strongly correlated to one another; with consistently significant correlation among GY, DFF, and NPP. Biomass production per day (BPD), GY, SDWP, DNM, and NPP were the highest contributors to the genetic variation. Mean comparisons and biplot analysis results revealed that genotypes Moti, Gebelcho, Dosha, Tumsa, and Didea had superior agronomic performance under all conditions. The study revealed the availability of genotypic variation among the faba bean genotypes for agronomic traits.
Published in | American Journal of Plant Biology (Volume 10, Issue 3) |
DOI | 10.11648/j.ajpb.20251003.11 |
Page(s) | 60-73 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Faba Bean, Agronomic Traits, Genotypic Variability, Grain Yield, Phosphorus
Parameters | Field | Greenhouse | |
---|---|---|---|
Adadi | Holetta | Soil | |
Altitude (masl) | 2520 | 2390 | ---- |
Latitude (N) | 8.21 | 9.04 | ---- |
Longitude (E) | 38.29 | 38.03 | ---- |
Temperature (OC) | 8.5-23.5 | 6.4 -24.4 | ---- |
Rainfall (mm) | 930.8 | 760.8 | ---- |
Soil type | Vertisol | Nitisol | Vertisol |
Soil textural class | Clay | Clay | Clay |
% Clay | 61.18 | 46.42 | 66.58 |
% Silt | 25.34 | 32.48 | 15.25 |
% Sand | 12.54 | 20.17 | 15.45 |
pH (H20) | 6.4 | 7.3 | 6.79 |
Available P (ppm) | 15.94 | 23.67 | 19.92 |
Total N (%) | 0.15 | 0.18 | 0.17 |
K (ppm) | 37.35 | 25.79 | 31.56 |
Organic C (%) | 1.16 | 0.738 | 1.17 |
CEC (Meq/100g) | 25.13 | 23.05 | 18.17 |
EC (μS) | 405.63 | 697.67 | 485.51 |
S.N. | Genotype | Pedigree | Year of Release | 1000 seed weight | Altitude Range (masl) | Yield (t/ha) | |
---|---|---|---|---|---|---|---|
Research Station | Farmer Field | ||||||
1 | Lalo | Selale Kasim 89-4 | 2002 | 325 | 2600-3000 | 3.6 | -- |
2 | Dagim | Girar Jarso 89-8 | 2002 | 299 | 2600-3000 | 3.5 | -- |
3 | CS20DK | CS20DK | 1977 | 476 | 2300-3000 | 2.0-4.0 | 1.5-3.0 |
4 | Obse | CS20DK x ILB4427 | 2007 | 821 | 1800-3001 | 2.5-6.1 | 2.1-3.5 |
5 | Gebelcho | ILB4726 x Tesfa | 2006 | 797 | 1800-3001 | 2.5-4.4 | 2.0-3.0 |
6 | Holetta-2 | BPL 1802-2 | 2000 | 506 | 2300-3000 | 2.0-5.0 | 1.5-3.5 |
7 | Hachalu | EH00102-4-1 | 2010 | 890 | 1900-2800 | 3.2-4.5 | 2.4-3.5 |
8 | Wayu | Wayu 89-5 | 2002 | 312 | 2100-2700 | 1.8-3.2 | 1.0-2.3 |
9 | Selale | Selale Kasim 91-13 | 2002 | 346 | 2100-2700 | 2.2-3.3 | 1.0-2.3 |
10 | Didea | EH01048-1 | 2014 | 700 | 1800-2800 | 3.5-4.6 | 2.0-4.4 |
11 | Gora | EK01024-1-2 | 2013 | 980 | 1800-2800 | 3.0-5.0 | 2.0-4.0 |
12 | Dosha | Coll 155/00-3 | 2009 | 704 | 1800-3000 | 2.8-6.2 | 2.3-3.9 |
13 | Walki | Bulga-70 x ILB4615 | 2008 | 676 | 1900-2800 | 2.4-5.2 | 2.0-4.2 |
14 | NC58 | NC58 | 1978 | 449 | 1800-3000 | 2.0-4.0 | 1.5-3.5 |
15 | Moti | ILB4432 x Kuse 2-27-33 | 2006 | 781 | 1800-3000 | 2.8-5.1 | 2.3-3.5 |
16 | Tumsa | Tesfa x ILB 4726 | 2010 | 737 | 1800-3000 | 2.5-6.9 | 2.0-3.8 |
17 | EH06088-1 | Advanced breeding lines | -- | -- | -- | -- | -- |
18 | EH07015-7 | Advanced breeding lines | -- | -- | -- | -- | -- |
19 | EH06022-4 | Advanced breeding lines | -- | -- | -- | -- | -- |
20 | EH06006-6 | Advanced breeding lines | -- | -- | -- | -- | -- |
Traits | ALA (cm2) | BPD (mg/d) | SDWP (g/p) | AGBP (g/p) | NPP | HSW (g) | GY (g/p) | HI (%) | DFF | DNM |
---|---|---|---|---|---|---|---|---|---|---|
Field | ||||||||||
Mean | 42.9 | 218.4 | 15.8 | 29.4 | 9.4 | 70.9 | 13.8 | 46.4 | 56.7 | 139.6 |
MSG | 25.3** | 3047.8** | 8.01** | 17.51** | 11.4** | 1971.3** | 2.57** | 9.56** | 165.3* | 325.4** |
MSL | 70.63** | 1959.7** | 15.66** | 43.44** | 6.14** | 72.71* | 6.97** | 1.94ns | 47.7** | 8.82** |
MSP | 2636.1* | 87944.1* | 404.8* | 1278.1* | 267.1* | 1551.1** | 243.0** | 13.63* | 33.0** | 1664.1* |
MSGxL | 7.59ns | 152.17ns | 0.60ns | 1.79ns | 3.31* | 35.98** | 0.61* | 2.03ns | 9.52** | 13.28** |
MSGxP | 9.45* | 119.16ns | 0.76ns | 1.75ns | 2.20ns | 16.30ns | 0.55* | 2.35ns | 0.33ns | 0.82ns |
MSPxL | 32.27* | 117.60ns | 0.51ns | 1.75ns | 5.28ns | 339.15** | 0.38ns | 0.08ns | 0.70ns | 0.60ns |
MSGxLxP | 3.13ns | 43.31ns | 0.46ns | 0.72ns | 3.63* | 15.74ns | 0.47ns | 3.23ns | 0.98ns | 0.61ns |
Greenhouse | ||||||||||
Mean | 37.8 | 200.8 | 13.8 | 25.2 | 13.4 | 62.2 | 11.6 | 45.2 | 49.9 | 128.1 |
MSG | 2.53ns | 536.90** | 1.97** | 8.86** | 6.78** | 533.40** | 6.03** | 30.1** | 54.8** | 123.2** |
MSP | 693.1** | 48319.1* | 200.0** | 604.9** | 49.8** | 274.95** | 108.5** | 11.84* | 55.1** | 304.2** |
MSGxP | 5.54* | 44.71ns | 0.57ns | 0.55ns | 0.01ns | 45.38** | 0.17ns | 3.70ns | 0.88ns | 2.16ns |
Genotypes | ALA | BPR | SDWP | AGBP | NPP | HSW | GY | HI | DFF | DNM |
---|---|---|---|---|---|---|---|---|---|---|
Field | ||||||||||
Lalo | 43.3ad | 192.6hi | 14.6fg | 27.9gi | 8.2gi | 51.3f | 13.3dh | 47.8ac | 55.5ef | 145.6c |
Dagim | 44.5a | 198.9gi | 15.7be | 29.2cg | 9.3dh | 52.2f | 13.6cf | 46.5cf | 63.9a | 148.0a |
EH06088-1 | 42.2be | 188.9j | 13.8g | 26.9i | 7.9i | 78.1bc | 13.1fh | 48.7a | 58.2d | 143.5de |
CS20DK | 44.2ac | 207.8ef | 15.6ce | 29.4bf | 9.8df | 63.5de | 13.8bc | 47.1bd | 61.8b | 142.7f |
Obse | 43.9ad | 219.2cd | 15.5ce | 29.3cg | 9.4dg | 81.0ac | 13.7cd | 46.8cf | 54.8fg | 134.9j |
Gebelcho | 43.0ae | 235.1ab | 16.4ac | 30.9a | 11.3ab | 82.0ac | 14.5a | 47.0be | 49.9k | 132.7l |
Holetta-2 | 43.1ae | 199.8fh | 14.8ef | 28.5eh | 9.6df | 81.0ac | 13.7ce | 48.3ab | 55.0fg | 143.5de |
Hachalu | 44.3ab | 233.1ab | 16.4ac | 30.7ab | 10.2bd | 66.1d | 14.3ab | 46.6cf | 55.0fg | 132.9l |
Wayu | 42.4ae | 205.1fg | 15.0ef | 28.2fh | 8.8ei | 50.6f | 13.2eh | 47.0be | 58.3d | 138.5i |
Selale | 42.0ce | 193.0hj | 14.5fg | 27.6gi | 8.3gi | 50.3f | 13.1gh | 47.6ac | 59.8c | 143.9d |
Didea | 42.2ae | 217.4cd | 16.4ac | 30.1ad | 9.6df | 77.6bc | 13.7ce | 45.5df | 51.1j | 139.7h |
Gora | 43.7ad | 215.0ce | 16.7a | 30.5ac | 10.1cd | 77.3c | 13.8cd | 45.2f | 55.8e | 142.9ef |
Dosha | 42.5ae | 231.3b | 16.6ab | 31.0a | 11.1ac | 66.3d | 14.4a | 46.6cf | 58.3d | 135.3j |
EH07015-7 | 42.9ae | 213.3de | 16.1ad | 29.7be | 9.4dg | 79.6ac | 13.6cg | 45.6df | 56.0e | 140.5g |
EH06022-4 | 41.8de | 200.7fh | 15.6be | 28.6dh | 7.8i | 82.3ac | 13.0h | 45.4ef | 58.8d | 143.6de |
Walki | 41.9ce | 222.1c | 16.5ab | 30.4ac | 10.2bd | 60.8e | 13.9bc | 45.7df | 58.2d | 138.2i |
NC58 | 39.7fg | 190.8ij | 14.6fg | 27.9gi | 8.7fi | 50.4f | 13.3dh | 47.7ac | 53.7i | 147.1b |
Moti | 41.0ef | 240.9a | 16.6ab | 31.1a | 11.8a | 83.8a | 14.6a | 46.9be | 48.4i | 130.5m |
Tumsa | 43.8ad | 230.1b | 16.6ab | 30.5ac | 10.0ce | 82.8ab | 13.9bc | 45.6df | 54.7h | 133.7k |
EH06006-6 | 38.6g | 200.7fh | 15.4df | 28.7dh | 8.1hi | 81.9ac | 13.3dh | 46.4cf | 54.8fg | 143.9d |
Location | ALA | BPR | SDWP | AGBP | NPP | HSW | GY | HI | DFF | DNM |
Holetta | 43.4a | 209.0b | 15.5b | 28.9b | 9.5a | 67.8b | 13.4b | 46.5a | 55.7a | 139.9b |
Adadi | 42.4b | 214.7a | 16.0a | 29.8a | 9.2b | 68.9a | 13.8a | 46.3a | 56.6b | 140.3a |
P Regime | ALA | BPR | SDWP | AGBP | NPP | HSW | GY | HI | DFF | DNM |
P+ | 46.2a | 231.0a | 17.1a | 31.7a | 10.4a | 70.9a | 14.6a | 46.1b | 56.5a | 137.5b |
P- | 39.6b | 192.7b | 14.5b | 27.1b | 8.3b | 65.8b | 12.6b | 46.6a | 55.8b | 142.7a |
RR (%) | 14.3 | 18.0 | 15.3 | 14.6 | 20.3 | 7.2 | 13.8 | -1.1 | -4.1 | -4.6 |
Greenhouse | ||||||||||
Genotypes | ALA | BPR | SDWP | AGBP | NPP | HSW | GY | HI | DFF | DNM |
Obse | 37.3a | 188.5ef | 13.3bd | 24.7de | 11.9cd | 48.3e | 11.3de | 46.1cf | 49.1ef | 131.0b |
Hachalu | 37.2a | 210.8ab | 14.f | 27.2a | 14.0a | 67.2b | 12.8a | 47.2bd | 46.8g | 129.0c |
ILB4358 | 37.5a | 197.4de | 14.0ab | 25.6bd | 12.0cd | 57.9d | 11.6cd | 45.4df | 48.6f | 130.3bc |
Selale | 38.1a | 211.3ab | 14.5a | 25.2cd | 11.4d | 44.0f | 10.7ef | 42.6g | 55.5a | 119.5f |
Didea | 38.0a | 201.2bd | 13.9ac | 26.1ac | 14.0a | 73.0a | 12.1bc | 46.5be | 48.2f | 130.0bc |
Gora | 37.5a | 211.9a | 14.3a | 26.4ab | 13.8a | 68.5b | 12.1bc | 45.9cf | 49.2df | 125.3e |
Dosha | 39.3a | 209.6ac | 14.1ab | 27.1a | 14.0a | 61.7c | 13.0a | 48.1b | 50.4cd | 129.5bc |
Walki | 37.4a | 183.9f | 13.0cd | 24.0e | 12.5bc | 57.9d | 11.0df | 45.8df | 51.3bc | 130.8b |
Moti | 37.8a | 192.9df | 12.7d | 25.8bd | 13.9a | 70.5ab | 13.1a | 50.8a | 42.8h | 134.0a |
Tumsa | 37.5a | 200.5cd | 13.4bd | 23.8e | 12.0c | 73.3a | 10.4f | 44.1fg | 51.8b | 118.8f |
Gebelcho | 37.0a | 208.8ac | 13.9ac | 26.6ab | 14.2a | 67.0b | 12.7ab | 47.9bc | 48.4f | 127.4d |
Wayu | 37.3a | 198.8d | 14.3ab | 25.8bd | 12.8b | 69.0b | 11.6cd | 44.8ef | 49.9de | 130.3bc |
P Regime | ALA | BPR | SDWP | AGBP | NPP | HSW | GY | HI | DFF | DNM |
P+ | 40.9a | 226.3a | 15.5a | 28.5a | 13.8a | 64.3a | 13.0a | 45.6b | 48.5b | 126b |
P- | 34.7b | 174.5b | 12.1b | 22.7b | 12.2b | 60.4b | 10.6b | 46.5a | 50.2a | 130.1a |
RR (%) | 15.2 | 22.7 | 21.6 | 20.6 | 12.1 | 6.1 | 18.9 | -1.5 | -1.4 | -3.3 |
CEC | Cation Exchange Capacity |
CSA | Central Statistical Agency |
FAO | Food and Agriculture Organization of the United Nations |
PC | Principal Component |
SAS | Statistical Analysis Software |
[1] | Multari, S., Stewart, D., and Russell, W. R. (2015). Potential of faba bean as future protein supply to partially replace meat intake in the human diet. Compr. Rev. Food Sci. Food Saf., 14: 511–522. |
[2] |
FAOSTAT, 2022. Food and Agriculture Organization of the United Nations. Available online:
http://faostat.fao.org (accessed on 21 September 2023) |
[3] | CSA. (2022). Report on area and production of crops. Central Statistics Agency agricultural sample survey for 2021/ 2022; Addis Ababa, Ethiopia. |
[4] | Crépon, K., Marget, P., Peyronnet, C., Carrouée, B., Arese, P., and Duc, G. (2010). Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. J. Field Crops Res. 115: 329–339. |
[5] | El-Sherbeeny, M., and Robertson, L. D. (2006). Protein content variation in a pure line faba bean (Vicia faba L.) collection. J. Sci. Food Agric., 58, 193–196. |
[6] | Etemadi, F., Hashemi, M., Zandvakili, O., Dolatabadian, A., and Sadeghpour, A. (2018 a). Nitrogen contribution from winter-killed faba bean cover crop to spring-sown sweet corn in conventional and no-till systems. Agronomy Journal, 110 (2): 455–462. |
[7] | Peoples, M. B., Hauggaard-Nielsen, H., and Jensen, E. S. (2009). The potential environmental benefits and risks derived from legumes in rotations. In: Emerich DW, Krishnan H, Peoples MB et al (eds) Nitrogen fixation in crop production. Crop Science Society of America, USA. |
[8] | Landry, E. J., Coyne, C. J., McGee, R. J., and Hu, J. (2016). Adaptation of autumn-sown faba bean germplasm to southeastern Washington. Agronomy Journal, 108: 301–308. |
[9] | Jensen, E., Peoples, M. B., and Hauggaard-Nielsen, H. (2010). Faba bean in cropping systems. Field Crops Res. 115, 203–216. |
[10] | Kaci, G., Blavet, D., Benlahrech, S., Kouakoua, E., Couderc, P., Deleporte, P., and Ounane, S. M. (2018). The effect of intercropping on the efficiency of faba bean–rhizobial symbiosis and durum wheat soil nitrogen acquisition in a Mediterranean agroecosystem. Plant Soil Environ, 64: 136–146. |
[11] | Aschi, A.; Aubert, M., Riah-Anglet, W., Nelieu, S., Dubois, C., Akpa-Vinceslas, M., Trinsoutrot-Gattin, I. (2017). Introduction of Faba Bean in Crop Rotation: Impacts on Soil Chemical and Biological Characteristics. Appl Soil Ecol, 120: 219–228. |
[12] | Tolessa, T. T.; Keneni, G.; Mohammad, H. Genetic progresses from over three decades of faba bean (Vicia faba L.) breeding in Ethiopia. Aust. J. Crop Sci. 2015, 9, 41–48. |
[13] | Muktadir M. A., Adhikari, K. N., Merchant, A., Belachew, K. Y., Vandenberg, A., Stoddard, F. L., and Khazaei, H. (2020). Physiological and Biochemical Basis of Faba Bean Breeding for Drought Adaptation. Agronomy 2020, 10, 1345. |
[14] | Pucher, A., Sy, O., Angarawai, I. I., Gondah, J., Zangre R, Ouedraogo, M., Sanogo, M., Boureima, S., Hash, C., and Haussmann, B. (2015). Agro-morphological Characterization of West and Central African Pearl Millet Accessions. Crop Science 55: 737-748. |
[15] | Mvuyekure, S. M., Sibiya, J., Derera, J., Nzungize, J., and Nkima, G. (2018). Application of Principal Components Analysis for Selection of Parental Materials in Rice Breeding. Journal of Genetics and Genomic Sciences 3: 010. |
[16] | Karkanis, A., Ntatsi, G., Lepse, L., Fernández, J. A., Vågen, I. M., Rewald, B., Alsin, I., Kronberga, A., Balliu, A., Olle, M., Bodner, G., Dubova, L., Rosa, E., and Savvas, D. (2018). Faba Bean Cultivation – Revealing Novel Managing Practices for More Sustainable and Competitive European Cropping Systems. Front. Plant Sci. 9: 1115. |
[17] | Flores, F., Hybl, M., Knudsen, J. C., Marget, P., Muel, F., Nadal, S., Narits, L., Raffiot, B., Sass, O., Solis, I., Winkler, J., Stoddard, F. L., and Rubiales, D. (2013). Adaptation of spring faba bean types across European climates. Field Crops Res. 145, 1–9. |
[18] | Maalouf, F., Nachit, M., Ghanem, M. E., and Singh, M. (2015). Evaluation of faba bean breeding lines for spectral indices, yield traits and yield stability under diverse environments. Crop Pasture Sci. 66, 1012–1023. |
[19] | Edmeades, G. O., Bolaños, J., and Chapman, S. C. (1997). Value of secondary traits in selecting for drought tolerance in tropical maize. In G. O. Edmeades, M. Banziger, HR. Mickelson, and C. B. Pena-Valdivia (eds.), Developing Drought and Low N Tolerant Maize. Proceedings of a Symposium, Elbatán, Mexico. pp. 222-234. |
[20] | Etemadi, F., Hashemi, M., Barker A. V., Zandvakili O. R., and Liu, X. (2019). Agronomy, Nutritional Value, and Medicinal Application of Faba Bean (Vicia faba L.). Horticultural and Plant Journal, 5(4): 170–182. |
[21] | Nebiyu, A., Jan, D., and Pascal, B. (2016). Phosphorus use efficiency of improved faba bean (Vicia faba L.) varieties in low-input agro-ecosystems. J. Plant Nutr. Soil Sci. 179(3): 347-354. |
[22] | El Mazlouzi, M., Morel, C., Chesseron, C., Robert, T., and Mollier, A. (2020). Contribution of External and Internal Phosphorus Sources to Grain P Loading in Durum Wheat (Triticum durum L.) Grown Under Contrasting Plevels. Front. Plant Sci. 11: 870. |
[23] | Tiessen H (2008). Phosphorus in the Global Environment. In: White, P. J. and Hammond, J. P. (eds.), The Ecophysiology of Plant-Phosphorus Interactions. Springer, the Netherlands. |
[24] | Katungi E, Farrow A, Mutuoki T, Gebeyehu S, Karanja D, Fistum A, Sperling L, Beebe S, Rubyogo JC, Buruchara R (2010). Improving common bean productivity: An Analysis of socioeconomic factors in Ethiopia and Eastern Kenya. Baseline Report Tropical legumes II. Centro Internacional de Agricultura Tropical - CIAT. Cali, Colombia. |
[25] | Syers J, Johnston A, Curtin D (2008). Efficiency of Soil and Fertilizer Phosphorus Use: Reconciling Changing Concepts of Soil Phosphorus Behavior with Agronomic Information. FAO Fertilizer and Plant Nutrition Bulletin 18. FAO, Rome, Italy. |
[26] | Bovill WD., Chun YH, and Glenn KM (2013). Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop & Past. Sci., 64, 179–198. |
[27] | Belachew, K. Y.; Maina, N. H.; Dersseh, W. M.; Zeleke, B.; Stoddard, F. L. Yield Gaps of Major Cereal and Grain Legume Crops in Ethiopia: A Review. Agronomy 2022, 12, 2528. |
[28] | Iqbal, A., Gui, H., Zhang, H., Wang, X., Pang, N., Dong, Q., and Song, M. (2019). Genotypic Variation in Cotton Genotypes for Phosphorus-Use Efficiency. Agronomy. 9(11): 689. |
[29] | Papakaloudis, P.; Dordas, C. Phosphorus Fertilization Affects Morphological, Physiological and Agronomic Characteristics of Faba Bean Cultivars. Sustainability 2023, 15, 13172. |
[30] | Tekle, E. K., Raghavaiah, C. V., Chavan, A., and Ibrahim, H. (2015). Effect of faba bean (Vicia faba L.) genotypes, plant densities and phosphorus on productivity, nutrient uptake, soil fertility changes and economics in central high lands of Ethiopia. Int. J. of Li. Sci. 3: 287-305. |
[31] | Temesgen, T., Keneni, G., Sefera, T., and Jarso, M. (2015). Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop J. 3(3): 258–268. |
[32] | Day, P. R., 1965. Particle fractionation and particle-size analysis, In: Black, C. A., (ed.) Methods of soil analysis, Part 1: American Society of Agronomy, Madison, WI, USA, pp. 545 - 567. |
[33] | van Reeuwijk, L. P., 2002. Procedures for soil analysis. 6th edition. Technical paper/International Soil Reference and Information center, Wageningen, The Netherlands. |
[34] | Bray, R. H., Kurtz, L. T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59, 39 - 45. |
[35] | Bowman, R. A., 1988. A rapid method to determine total phosphorus in soils. Soil Sci Soc Am J 52, 1301 - 1304. |
[36] | SAS Institute. (2012). SAS/STAT guide for personal computer. v. 9.3. SAS Inst., Cary, NC. |
[37] | Pimratch, S., Jogloy, S., Vorasoot, N., Toomsan, B., Patanothai, A. and Holbrook, C. C. (2008). Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. Journal of Agronomy and Crop Science 194: 15-25. |
[38] | Yan, W. and Frégeau-Reid, J. (2018). Genotype by Yield by Trait (GYT) Biplot: a Novel Approach for Genotype Selection based on Multiple Traits. Scientific Reports; 8: 8242. |
[39] | Gebremariam, M., Worku, W., and Sinebo, W. (2018). Effect of integrated crop-management packages on yield and yield components of faba bean (Vicia faba L.) cultivars in Southern Ethiopia. Vegetos 31(1): 146. |
[40] | Higo, M., Azuma, M., Kamiyoshihara, Y., Kanda, A., Tatewaki, Y., and Isobe, K. (2020). Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms 8: 178. |
[41] | Gemechu, K., Endashew, B., Muhammed, I., Fassil, A., Emana, G., and Kifle, D. (2012). Genetic Potential and Limitations of Ethiopian Chickpea (Cicer arietinum L) Germplasm for Improving Attributes of Symbiotic Nitrogen Fixation, Phosphorus Upatke and Use Efficiency, and Adzuki Bean Beetle (Callosobrucus chinensis L.) Resistance. PhD Dissertation |
[42] | Behailu, M. A., Kifle, D., Gemechu, K. W., Seid, A. K. and Kassahun, T. M. (2018). Genetic diversity study of Ethiopian faba bean (Vicia faba L.) varieties based on phenotypic traits and inter simple sequence repeat (ISSR) markers. African Journal of Biotechnology. Vol. 17(13), pp. 433-446. |
[43] | Kubure, T. E., Raghavaiah, C. V., Hamza, I. (2016) Production potential of faba bean (Vicia faba L.) genotypes in relation to plant densities and phosphorus nutrition on vertisols of central highlands of West Showa Zone, Ethiopia, east Africa Adv Crop Sci Technol, 4 (2016), p. 214 |
[44] | Baginsky, C., Silva, P., Auza, J., and Acevedo, E. (2013). Evaluation for fresh consumption of new broad bean genotypes with a determinate growth habit in central Chile. Chil. J. Agr. Res. 73, 225–232. |
[45] | Etemadi, F., Hashemi, M., Shureshjani, R., and Autio, W. R. (2017). Application of data envelopment analysis to assess performance efficiency of eight faba bean varieties. Agron. J. 109, 1225–1231. |
[46] | Abdalla A. A., Ahmed M. F., Taha M. B. and Naim A. M. 2015. Effects of Different Environments on Yield Components of Faba Bean (Vicia faba L.) International Journal of Agriculture and Forestry 5(1): 1–9. |
[47] | Gemechu Keneni and Musa Jarso, (2009). Comparison of Two Approaches for Estimation of Genetic Variation for Two Economic Traits in Faba Bean Genotypes Grown under Waterlogged Verisols. East African Journal of Sciences (2009) Volume 3(1) 95-101 |
[48] | Dantuma, G., and Thompson, R. (1983). Whole-crop physiology and yield components. In: Hebblethwaite, P. D. (Ed.). The Faba bean (Vicia faba L.). Butterworths Publisher, London. |
[49] | Gemechu, K., Mussa, J., and Tezera, W. (2006). Faba bean (Vicia faba L) Genetics and Breeding Research in Ethiopia: A Review. In: Ali K, Keneni G, Ahmed S, Malhotra R, Beniwal S, Makkouk K, Halila MH (eds) Food and forage legumes of Ethiopia: Progress and prospects. Proceedings of a workshop on food and forage legumes. September 2003, Addis Ababa, Ethiopia. ICARDA, Aleppo, Syria, pp 351. |
[50] | Harker, K. N., O’Donovan, J. T., Smith, E. G., Johnson, E. N., Peng, G., Willenborg, C. J., and Grenkow, L. A. (2015). Seed size and seeding rate effects on canola emergence, development, yield and seed weight. Canadian Journal of Plant Science 95(1): 1–8. |
[51] | Patel, J. B., Bhatiya, V. J., Babariya, C. A., and Sondarva, J. (2016). Effect of seed size on seedling vigour, plant growth, seed yield and its parameters: a review. Res Envi. Life Sci, 9: 859–864. |
[52] | Argaw, A.; Mnalku, A. (2017). Effectiveness of native Rhizobium on nodulation and yield of faba bean (Vicia faba L.) in Eastern Ethiopia. Arch. Agron. Soil Sci., 63. |
[53] | Unkovich, M. J., Baldock, J., and Matthew, F. (2010). Variability in Harvest Index of Grain Crops and Potential Significance for Carbon Accounting: Examples from Australian Agriculture. In: Donald I. Sparks, editor: Advances in Agronomy, 105(1): 173-219. |
[54] | Etemadi, F., Hashemi, M., Zandvakili, O., and Mangan, F. (2018e). Phenology yield and growth pattern of faba bean varieties. International Journal of Plant Production 12(3): 1–8. |
[55] | Jung, C. & Müller, A. E. Flowering time control and applications in plant breeding. Trends Plant Sci. 14, 563–573 (2009). |
[56] | Alharbi, N. H. Alghamdi, S. S. Migdadi, H. M. El-Harty, E. H. and Adhikari, K. N., 2021. Evaluation of Frost Damage and Pod Set in Faba Bean (Vicia faba L.) under Field Conditions. Plants (Basel) 10(9): 1925. |
[57] | Dewangan, N. K., Dahiya, G. S., Janghel, D. K. and Dohare, S. (2022). Diversity analysis for seed yield and its component traits among faba bean (Vicia faba L.) germplasm lines. Legume Research: An International Journal. 45(6): 689-694. |
[58] | Olle, M.; Williams, I. H.; Rosa, E. Selecting appropriate faba bean var. minor varieties for production under Northern European environmental conditions. Soil Plant Sci. 2019, 69, 432–438. |
[59] | Aguilar-Benitez D, Casimiro-Soriguer I, Maalouf F, Torres AM (2021) Linkage mapping and QTL analysis of flowering time in faba bean. Sci Rep 11(1): 13716. |
[60] | Asnakech, T., John, D., Julia, S., Asnake, F. (2016). Participatory assessment of production threats, farmers’ desired traitsand selection criteria of faba bean (Vicia faba L.) varieties: opportunities for faba bean breeding in Ethiopia. Indian Journal of Agricultural Research. 50(4): 295-302. |
[61] | Maranna, S., Nataraj, V., Kumawat, G., Chandra, S., Rajesh, V., Rajkumar, R., Patel, R. M., Ratnaparkhe, M. B., Husain, S. M., S., & Khandekar, N., 2021. Breeding for higher yield, early maturity, wider adaptability and waterlogging tolerance in soybean (Glycine max L.): A case study. Sci Rep 11, 22853 (2021). |
[62] | Asnakech (2014) Genetic analysis and characterization of faba bean (Vicia faba) for resistance to chocolate spot (Botrytis fabae) disease and yield in the Ethiopian highlands. PhD Thesis. University of Kwazulu-Natal, South Africa. |
[63] | Yudhvir, S., Simran, S., Bhallan, S. S., Surbhi, S., Arti, V., and Vishalakshi (2017) Association Studies for Seed Yield and Related Morpho-Physiological Traits in Faba Bean (Vicia faba L.) under Mid Hill Conditions of North Western Himalayas, India. Int. J. Curr. Microbiol. App. Sci. 6(9): 2417-2422. |
[64] | Bodner, G., Kronberga, A., Lepse, L., Olle, M., Vagen, I. M., Rabante, L., et al. (2018) Trait identification of faba bean ideotypes for Northern European environments. Eur. J. Agron. 96, 1–12. |
[65] | Pobkhunthod N, Authapun J, Chotchutima S, Rungmekarat S, Kittipadakul P, Duangpatra J and Chaisan T (2022) Multilocation Yield Trials and Yield Stability Evaluation by GGE Biplot Analysis of Promising Large-Seeded Peanut Lines. Front. Genet. 13: 876763. |
[66] | Miko, I., (2008) Genetic dominance: genotype-phenotype relationships. Nature Education 1: 112. |
[67] | Kwon, S. H., and Torrie, J. H. (1964) Heritability and inter-relationship among traits of two soybean populations. Crop Science 4: 196-198. |
[68] | Stansluos, A. A. L.; Öztürk, A.; Niedbała, G.; Türko ˘glu, A.; Halilo ˘glu, K.; Szulc, P.; Omrani, A.; Wojciechowski, T.; Piekutowska, M. Genotype–Trait (GT) Biplot Analysis for Yield and Quality Stability in Some Sweet Corn (Zea mays saccharata Sturt.) Genotypes. Agronomy 2023, 13, 1538. |
[69] | Yan, W. and Tinker, N. A. (2006). Biplot Analysis of Multi-Environment Trial Data: Principles and Applications. Can. Jour. of Pla. Sci. 86(3): 623-645. |
[70] | Joshi, B. K. (2012). Multiple Traits-based Analysis of Tartary Buckwheat Landraces Using GGE-Biplot. Nepal Jo. of Sci. and Tech.; 13(1): 1-6. |
APA Style
Kumbi, G. A., Adetimirin, V., Fatokun, C., Keneni, G., Assefa, F. (2025). Genotypic Variation of Faba Bean (Vicia faba L.) for Agronomic Traits Under Low and High Soil Phosphorus Regimes. American Journal of Plant Biology, 10(3), 60-73. https://doi.org/10.11648/j.ajpb.20251003.11
ACS Style
Kumbi, G. A.; Adetimirin, V.; Fatokun, C.; Keneni, G.; Assefa, F. Genotypic Variation of Faba Bean (Vicia faba L.) for Agronomic Traits Under Low and High Soil Phosphorus Regimes. Am. J. Plant Biol. 2025, 10(3), 60-73. doi: 10.11648/j.ajpb.20251003.11
@article{10.11648/j.ajpb.20251003.11, author = {Gemechu Abu Kumbi and Victor Adetimirin and Christian Fatokun and Gemechu Keneni and Fassil Assefa}, title = {Genotypic Variation of Faba Bean (Vicia faba L.) for Agronomic Traits Under Low and High Soil Phosphorus Regimes }, journal = {American Journal of Plant Biology}, volume = {10}, number = {3}, pages = {60-73}, doi = {10.11648/j.ajpb.20251003.11}, url = {https://doi.org/10.11648/j.ajpb.20251003.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpb.20251003.11}, abstract = {Faba bean (Vicia faba L.) is a multi-purpose crop owing to its immense economic and ecological benefits. Genetic variability assessment for agronomic traits is a crucial step in improving the yield and yield components of the crop. Phosphorus deficiency seriously affects the yield of faba bean. The present study was conducted to evaluate the genotypic variability of faba bean for agronomic traits. Twenty and 12 genotypes, in the field and greenhouse respectively, were planted under two P fertilizer regimes (0 and 46kg/ha). Analysis of variance indicated highly significant (P<0.01) genotypic variation for most of the agronomic traits under both field and greenhouse; while grain yield (GY), days to fifty percent flowering (DFF), number of pods per plant (NPP) and days to 90% maturity (DNM) had significant genotype by location interaction. The agronomic performance of P-unfertilized (P-) treatments was significantly reduced; with the effect ranging from -4.6% for DNM to 20.3% for NPP in the field; and from -3.6% for DFF to 21.6% for shoot dry weight per plant (SDWP) in the greenhouse. Correlation analysis indicated that most traits were strongly correlated to one another; with consistently significant correlation among GY, DFF, and NPP. Biomass production per day (BPD), GY, SDWP, DNM, and NPP were the highest contributors to the genetic variation. Mean comparisons and biplot analysis results revealed that genotypes Moti, Gebelcho, Dosha, Tumsa, and Didea had superior agronomic performance under all conditions. The study revealed the availability of genotypic variation among the faba bean genotypes for agronomic traits. }, year = {2025} }
TY - JOUR T1 - Genotypic Variation of Faba Bean (Vicia faba L.) for Agronomic Traits Under Low and High Soil Phosphorus Regimes AU - Gemechu Abu Kumbi AU - Victor Adetimirin AU - Christian Fatokun AU - Gemechu Keneni AU - Fassil Assefa Y1 - 2025/06/30 PY - 2025 N1 - https://doi.org/10.11648/j.ajpb.20251003.11 DO - 10.11648/j.ajpb.20251003.11 T2 - American Journal of Plant Biology JF - American Journal of Plant Biology JO - American Journal of Plant Biology SP - 60 EP - 73 PB - Science Publishing Group SN - 2578-8337 UR - https://doi.org/10.11648/j.ajpb.20251003.11 AB - Faba bean (Vicia faba L.) is a multi-purpose crop owing to its immense economic and ecological benefits. Genetic variability assessment for agronomic traits is a crucial step in improving the yield and yield components of the crop. Phosphorus deficiency seriously affects the yield of faba bean. The present study was conducted to evaluate the genotypic variability of faba bean for agronomic traits. Twenty and 12 genotypes, in the field and greenhouse respectively, were planted under two P fertilizer regimes (0 and 46kg/ha). Analysis of variance indicated highly significant (P<0.01) genotypic variation for most of the agronomic traits under both field and greenhouse; while grain yield (GY), days to fifty percent flowering (DFF), number of pods per plant (NPP) and days to 90% maturity (DNM) had significant genotype by location interaction. The agronomic performance of P-unfertilized (P-) treatments was significantly reduced; with the effect ranging from -4.6% for DNM to 20.3% for NPP in the field; and from -3.6% for DFF to 21.6% for shoot dry weight per plant (SDWP) in the greenhouse. Correlation analysis indicated that most traits were strongly correlated to one another; with consistently significant correlation among GY, DFF, and NPP. Biomass production per day (BPD), GY, SDWP, DNM, and NPP were the highest contributors to the genetic variation. Mean comparisons and biplot analysis results revealed that genotypes Moti, Gebelcho, Dosha, Tumsa, and Didea had superior agronomic performance under all conditions. The study revealed the availability of genotypic variation among the faba bean genotypes for agronomic traits. VL - 10 IS - 3 ER -