| Peer-Reviewed

A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany)

Received: 22 January 2023    Accepted: 8 February 2023    Published: 24 February 2023
Views:       Downloads:
Abstract

About 20 years ago, amateur archeologists and local history researchers discovered the iron silicide (FESI) strewn field measuring about 60 km x 30 km in the districts of the Chiemgau and the Inn-Salzach region in southeast Germany. They evidenced the connection between the FESi distribution and the pervasive rim wall craters and suggested a meteorite impact event, now widely recognized under the name of the Chiemgau impact. Widespread in the strewn field and in individual finds far beyond it they recovered and documented thousands of FESI particles of millimeter to centimeter size with a total mass of more than 2 kg, whereby a large lump of 8 kg stands out as a single find. The find layer is largely uniformly located at a depth of 30 - 40 cm in a glacial loose sediment soil. Microprobe, SEM-EDS, TEM and EBSD analyses determined as main minerals gupeiite and xifengite, subordinately hapkeite, naquite and linzhite. Besides the main elements Fe and Si of the matrix, more than 30 other chemical elements have been addressed so far, including uranium and various REE. Incorporated into the FESI matrix are the carbide minerals moissanite and titanium carbide as superpure crystals, and khamrabaevite, zirconium carbide, and uranium carbide, furthermore CAIs. SEM images indicate shock metamorphism. The present article describes the discovery history of this worldwide unique FESI occurrence with the exact find situations, as well as the very varied morphologies of the find particles with the macroscopically recognizable components and SEM EDS examples.

Published in Earth Sciences (Volume 12, Issue 1)
DOI 10.11648/j.earth.20231201.14
Page(s) 26-40
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Iron Silicides, Gupeiite, Xifengite, Hapkeite, Meteorites, Chiemgau Meteorite Impact Event, Germany

References
[1] Ernstson, K.; Mayer, W.; Neumair, A.; Rappenglück, B.; Rappenglück, M. A.; Sudhaus, D.; Zeller, K. W. The Chiemgau crater strewn field: evidence of a Holocene large impact in southeast Bavaria, Germany. – J. Siberian Federal University, Engineering & Technology, 2010, 1, 72-103.
[2] Rappenglück, M.; Rappenglück, B.; Ernstson, K. Kosmische Kollision in der Frühgeschichte. Der Chiemgau-Impakt: Die Erforschung eines bayerischen Meteoritenkrater-Streufelds. Z. Anomalistik 2017, 17, 235 -260.
[3] Rappenglück, M.; Rappenglück, B.; Ernstson, K. Cosmic collision in prehistory. The Chiemgau Impact: research in a Bavarian meteorite crater strewn field (2., translated from German: https://pdfs.semanticscholar.org/0b62/4ca79c834edc46c86e1fa575c70f726608c8.pdf?_ga=2.133770253.2003692324.1598954865-1676338455.1598954865 accessed 9 Dec. 2022).
[4] Rappenglück, B.; Hiltl, M.; Rappenglück, M.; Ernstson, K. The Chiemgau Impact - a meteorite impact in the Bronze­/Iron Age and its extraordinary appearance in the archaeological record. In Wolfschmidt, G. (ed.) Him-melswelten und Kosmovisionen — Imaginationen, Modelle, Weltanschauungen. Nuncius Hamburgensis. Beiträge zur Geschichte der Naturwissenschaften, 51, 330-349, tredition Hamburg.
[5] Ernstson, K.; Poßekel, J. Digital terrain model (DTM) topography of small craters in the Holocene Chiemgau (Germany) meteorite impact strewn field. 11th Planetary Crater Consortium 2020 (LPI Contrib. 2251), 2020, Abstract #2019. https://www.chiemgau-impakt.de/wp-content/uploads/2020/06/PCC-2019.pdf, accessed 9 Dec. 2022.
[6] Ernstson, K. Evidence of a meteorite impact-induced tsunami in lake Chiemsee (Southeast Germany) strengthened 47th Lunar and Planetary Science Conference, 2016, 1263.pdf, Abstract. https://www.hou.usra.edu/meetings/lpsc2016/pdf/1263.pdf, accessed 9 Dec. 2022.
[7] Ernstson, K.; Poßekel, J. Complex Impact Cratering in a Soft Target: Evidence from Ground Penetrating Radar (GPR) for Three Structures in the Chiemgau Meteorite Impact Strewn Field, SE Germany (1.3 km-Diameter Eglsee, 250 m-Diameter Riederting, 60 m-Diameter Aiching) AGU Fall Meeting 2020, EP036-0005, Abstract.
[8] Ernstson, K.; Sideris, C.; Liritzis, I.; Neumair, A. The Chiemgau meteorite impact signature of the Stöttham archaeological site (Southeast Germany). Mediterranean Archaeology and Archaeometry, 12, 249-259.
[9] Ernstson, K.; Hilt, M.; Neumair, A. Microtektite-like glasses from the Northern Calcareous Alps (Southeast Germany): Evidence of a proximal impact ejecta origin. 45th Lunar and Planetary Science Conference, 2014, LPI Contribution No. 1777, pdf. 1200, Abstract.
[10] Ernstson, K.; Mayer, W.; Neumair, A.; Sudhaus, D. The sinkhole enigma in the Alpine Foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes. Centr. Eur. J. Geosciences 2011, 3 (4), 385-397.
[11] Shumilova, T. G.; Isaenko, S. I.; Ulyashev, V. V.; Makeev, B. A.; Rappenglück, M. A.; Veligzhanin, A. A.; Ernstson, K. Enigmatic Glass-Like Carbon from the Alpine Foreland, Southeast Germany: A Natural Carbonization Process. Acta Geologica Sinica (English Edition) 2018, 92, 2179-2200.
[12] Beer, R.; Benske, G.; Mayer, W.; Bliemetsrieder, T.; Raeymaekers, B.; Sporn, R. Beewatch und der Meteorit aus Oberbayern; nur eine Hypothese? Presentation Beewatch – AÖ-Impakt im Werk Gendorf am 15. Sept. 2003.
[13] The Chiemgau Impact Research Team (Kord Ernstson, Werner Mayer, Gerhard Benske, Michael Rappenglück, and Ulrich Schüssler) Did the Celts see a comet impact in 200 B. C.? A new-found field of impact craters may mark the site of a recent comet strike Astronomy Published: Thursday, October 14, 2004, https://astronomy.com/news/2004/10/did-the-celts-see-a-comet-impact-in-200-bc, accessed 9 Dec. 2022.
[14] Rappenglück, M. A.; Ernstson, K.; Mayer, W.; Beer, R.; Benske, G.; Siegl, C.; Sporn, R.; Bliemetsrieder, T.; Schüssler, U. The Chiemgau impact event in the Celtic Period: evidence of a crater strewn field and a cometary impactor containing presolar matter. 2004, https://www.chiemgau-impakt.de/pdfs/Chiemgau_impact.pdf, accessed 10 Dec. 2022.
[15] Rappenglück, M. A.; Schüssler, U.; Mayer, W.; Ernstson, K. Sind die Eisensilizide aus dem Impakt-Kraterstreufeld im Chiemgau kosmisch? 2005, Eur. J. Mineral. 17, Beih. 1: 108.
[16] Rappenglück, M. A. Natural Iron Silicides: A Systematic Review. Minerals 2022, 12 (2), 188.
[17] Bauer, F.; Hiltl, M; Rappenglück, M. A.; Ernstson, K (2020): An eight kilogram chunk and more: evidence for a new class of iron silicide meteorites from the Chiemgau impact strewn field (SE Germany). Modern Problems of Theoretical, Experimental, and Applied Mineralogy (Yushkin Readings – 7-10 December 2020, Syktyvkar, Russia), Proceedings, 359-360.
[18] Rappenglück, M. A.; Bauer, F.; Ernstson, K.; Hiltl, M. Meteorite impact on a micrometer scale: iron silicide, carbide and CAI minerals from the Chiemgau impact event (Germany). Problems and perspectives of modern mineralogy (Yushkin Memorial Seminar–2014) Proceedings of mineralogical seminar with international participation Syktyvkar, Komi Republic, Russia 19–22 May 2014.
[19] Bauer, F.; Hiltl, M.; Rappenglück, M. A.; Neumair, A.; Ernstson, K. Fe2Si (hapkeite) from the subsoil in the Al-pine Foreland (southeast Germany): is it associated with an impact? 76th Annual Meteoritical Society Meeting 2013. 5056. pdf, abstract.
[20] Anand, M.; Taylor, L. A.; Nazaraov, M. A.; Shu, J.; Mao, H.-K.; Hemley, R. J. New Lunar Mineral HAPKEITE: Product of Impact-Induced Vapor-Phase Deposition in the Regolith? Lunar and Planetary Science XXXIV. 2003, 1818.pdf, abstract.
[21] Anand, M.; Taylor, L. A.; Nazarov, M. A.; Shu, J.; Mao H. K.; Hemley, R. J. Space weathering on airless plane-tary bodies: Clues from the lunar mineral hapkeite. PNAS 2005, 101, 6847-6851.
[22] ICSD Database Fe2Si [100094] 2931.
[23] Kudielka, H. Die Kristallstruktur von Fe2Si, ihre Verwandtschaft zu den Ordnungsstrukturen des ɑ-(Fe, Si)-Mischkristalls und zur Fe5Si3-Struktur Z. Kristall.-Cryst. Mat. 1977, 145, 177–189.
[24] Schüssler, U. On the origin of the xifengite and gupeiite ferrosilicides. http://www.chiemgau-impact.com/mineralogy/. accessed 12 Dec. 2022.
[25] Ivanova, M. A.; Petaev, M. I.; MacPherson, G. J.; Nazarov, M. A.; Taylor, L. A.; Wood, J. A. The first known natu-ral occurrence of calcium monoaluminate in a calcium-aluminum-rich inclusion from the CH chondrite Northwest Africa 470 Meteorit. Planet. Sci. 2002, 37 (10), 1337–1345.
[26] Sweeny Smith, S. A.; Connolly Jr. H. C.; Ma C.; Rossman G. R.; Beckett J. R.; Ebel D. S.; Schrader D. L.; Initial Analysis of a Refractory Inclusion Rich in CaAl2O4 from NWA 1934: Cracked Egg 41st Lunar and Planetary Sci-ence Conference 2010, 1877.pdf, abstract.
[27] Chi Ma; Kampf, A. R; Connolly Jr., H. C.; Beckett, J. R.; Rossman, G. R.; Sweeney Smith, S. A., Schrader, D. L.. Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. American Mineralogist 2011, 96, 709-715.
[28] White, L. F.; Darling, J.; Moser, D. E.; Cayron, C.; Barker, I. R.; Dunlop, J.; Tait, K. T. Baddeleyite as a wide-spread and sensitive indicator of meteorite bombardment in planetary crusts. Geology 2018, 46 (8), 719-722.
[29] Gleason, A. E.; Bolme, C. A.; Galtier, E.; Lee, H. J.; Granados, E.; Dolan, D. H.; Seagle, C. T.; Ao, T.; Ali, S.; Lazicki, A.; Swift, D.; Celliers, P.; Mao, W. L. Compression Freezing Kinetics of Water to Ice VII. Phys. Rev. Lett. 2017, 119, 025701.
[30] Nakamura, K. G.; Matsuda, A.; Kondo, K. Liquid‐Solid Phase Transition of Benzene under Shock Compression Studied by Time‐Resolved Nonlinear Raman Spectroscopy AIP Conference Proceedings 2006, 845, 1341.
[31] Poelchau, M. H.; Kenkmann, T. Feather features: A low‐shock pressure indicator in quartz. Journal of Geophysical Research 2011, 116, B02201, doi: 10.1029/2010JB007803.
[32] Stefano C. J.; Hackney S. A.; Kampf, A. R. The occurrence of iron silicides in a fulgurite: Implications for fulgurite genesis The Canadian Mineralogist 2020, 58 (1), 115-123.
[33] Yanev, Y.; Benderev, A.; Zotov, N.; Ilieva, I.; Iliev, T.; Georgiev, S. Tektite or meteorite from Koshava gypsum mine, NW Bulgaria. Bulgarian Geological Society, National Conference with international participation “GEOSCIENCES 2015” 2015, 81-82.
[34] Moggi Cecchi, V.; Caporali, S.; Pratesi, G. (2015) A newfound anomalous ureilite with chondritic inclusions. 78th Ann. Meeting Meteoritical Soc. 2015, Abstract #1856.
[35] Smith, C. L.; Downes, H.; Jones, A. P. Metal and sulphide phases in interstitial veins in ‘dimict’ ureilites – insights into the history and petrogenesis of the ureilite parent body. Lunar and Planetary Science XXXIX (2008), 1669.pdf, abstract.
[36] Szöőr, Gy.; Elekes, Z.; Rózsa, P.; Uzonyi, I.; Simulák, J.; Kiss Á. Z. Magnetic spherules: Cosmic dust or markers of a meteoritic impact? Nucl. Instrum. Methods in Phys. Res. Section B 2001, 181, 557-562.
[37] Croat, T. K.; Jadhav, M.; Lebsack, E.; Bernatowicz, T. J. A unique supernova graphite: contemporaneous condensation of all things carbonaceous. 42nd Lunar and Planetary Science Conference (2011), 1533. pdf, abstract.
[38] Lin, C.; Hollister, L. S.; MacPherson, G. J.; Bindi, L.; Ma, C.; Andronicos, C. L.; Steinhardt, P. J. Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space. Sci Rep 2017, 7, 1637, https://doi.org/10.1038/s41598-017-01445-5, accessed 13 Dec. 2022.
[39] Batovrin, S.; Lipovsky, B.; Gulbin, Y.; Pushkarev, Y.; Shukolyukov, Y. A. Lunar Constraints on the origins of iron silicide spherules in ultrahigh-temperature distal impact ejecta. Meteoritics & Planetary Science 2021, 56, Nr 7, 1369–1405.
[40] Darga, R.; Wierer, J. F. (2009). Wanderungen in die Erdgeschichte: Bd. 27. Auf den Spuren des Inn-Chiemsee- Gletschers - Exkursionen. 2009, München: Pfeil.
[41] Doppler, G.; Geiss, E.; Kroemer, E.; & Traidl, R. (2011). Response to 'The fall of Phaethon: a Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south-east Germany) by Rappenglück et al. (Antiquity 84). Antiquity, 85 (327), 274-277.
[42] Reimold, W. U. Press release. – Naturkundemuseum Berlin, Nov. 21. 2006; and Statement in a TV documentary report (October 10, 2007): Der Chiemgau-Impakt, Faszination Wissen, BR.
[43] Kenkmann T.; Artemieva N.; Poelchau M. The Carancas event on September 15, 2007: meteorite fall, impact conditions, and crater characteristics. 39th Lunar and Planetary Science Conference. 2008, abstract #1094.
[44] Ernstson, K. Chiemgau impact: Shock metamorphism (diaplectic glass) in the #001 crater, the Carancas (Peru) crater, and the question of the formation of very small hypervelocity impact craters. 2012, http://www.chiemgau-impact.com/2012/12/chiemgau-impact-shock-metamorphism-diaplectic-minerals-in-the-001-crater-the-carancas-peru-crater-and-the-question-of-the-formation-of-very-small-hypervelocity-impact-craters, accessed 13 Dec. 2022.
[45] Fehr, K. T.; Hochleitner, R.; Hölzl, S.; Geiss, E.; Pohl, J.; Faßbinder, J. Ferrosilizium-Pseudometeorite aus dem Raum Burghausen, Bayern. Der Aufschluß 2004, 55, 297-303.
[46] Eichhorn, R.; Geiß, E.; Loth, R. Nicht von dieser Welt – Bayerns Meteorite. Bayerisches Landesamt für Umwelt (ed.), Augsburg, Germany, 2012, 126 pages.
[47] Deloule, E.; Chaussidon, M.; Glass, B. P.; Koeberl, U–Pb isotopic study of relict zircon inclusions recovered from Muong Nong-type tektites. Geochimica et Cosmochimica Acta 2001, 65, 1833–1838.
[48] Kamo, S. L.; Lana, C.; Morgan, J. V. U–Pb ages of shocked zircon grains link distal K–Pg boundary sites in Spain and Italy with the Chicxulub impact. Earth Planet. Sci. Letters 2011, 310, 401-408.
[49] Prasad M. S.; Khedekar V. D. Impact microcrater morphology on Australasian microtektites. Meteoritics & Planetary Science 2003, 38: 1351– 1357.
Cite This Article
  • APA Style

    Kord Ernstson, Frank Bauer, Michael Hiltl. (2023). A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany). Earth Sciences, 12(1), 26-40. https://doi.org/10.11648/j.earth.20231201.14

    Copy | Download

    ACS Style

    Kord Ernstson; Frank Bauer; Michael Hiltl. A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany). Earth Sci. 2023, 12(1), 26-40. doi: 10.11648/j.earth.20231201.14

    Copy | Download

    AMA Style

    Kord Ernstson, Frank Bauer, Michael Hiltl. A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany). Earth Sci. 2023;12(1):26-40. doi: 10.11648/j.earth.20231201.14

    Copy | Download

  • @article{10.11648/j.earth.20231201.14,
      author = {Kord Ernstson and Frank Bauer and Michael Hiltl},
      title = {A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany)},
      journal = {Earth Sciences},
      volume = {12},
      number = {1},
      pages = {26-40},
      doi = {10.11648/j.earth.20231201.14},
      url = {https://doi.org/10.11648/j.earth.20231201.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.earth.20231201.14},
      abstract = {About 20 years ago, amateur archeologists and local history researchers discovered the iron silicide (FESI) strewn field measuring about 60 km x 30 km in the districts of the Chiemgau and the Inn-Salzach region in southeast Germany. They evidenced the connection between the FESi distribution and the pervasive rim wall craters and suggested a meteorite impact event, now widely recognized under the name of the Chiemgau impact. Widespread in the strewn field and in individual finds far beyond it they recovered and documented thousands of FESI particles of millimeter to centimeter size with a total mass of more than 2 kg, whereby a large lump of 8 kg stands out as a single find. The find layer is largely uniformly located at a depth of 30 - 40 cm in a glacial loose sediment soil. Microprobe, SEM-EDS, TEM and EBSD analyses determined as main minerals gupeiite and xifengite, subordinately hapkeite, naquite and linzhite. Besides the main elements Fe and Si of the matrix, more than 30 other chemical elements have been addressed so far, including uranium and various REE. Incorporated into the FESI matrix are the carbide minerals moissanite and titanium carbide as superpure crystals, and khamrabaevite, zirconium carbide, and uranium carbide, furthermore CAIs. SEM images indicate shock metamorphism. The present article describes the discovery history of this worldwide unique FESI occurrence with the exact find situations, as well as the very varied morphologies of the find particles with the macroscopically recognizable components and SEM EDS examples.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany)
    AU  - Kord Ernstson
    AU  - Frank Bauer
    AU  - Michael Hiltl
    Y1  - 2023/02/24
    PY  - 2023
    N1  - https://doi.org/10.11648/j.earth.20231201.14
    DO  - 10.11648/j.earth.20231201.14
    T2  - Earth Sciences
    JF  - Earth Sciences
    JO  - Earth Sciences
    SP  - 26
    EP  - 40
    PB  - Science Publishing Group
    SN  - 2328-5982
    UR  - https://doi.org/10.11648/j.earth.20231201.14
    AB  - About 20 years ago, amateur archeologists and local history researchers discovered the iron silicide (FESI) strewn field measuring about 60 km x 30 km in the districts of the Chiemgau and the Inn-Salzach region in southeast Germany. They evidenced the connection between the FESi distribution and the pervasive rim wall craters and suggested a meteorite impact event, now widely recognized under the name of the Chiemgau impact. Widespread in the strewn field and in individual finds far beyond it they recovered and documented thousands of FESI particles of millimeter to centimeter size with a total mass of more than 2 kg, whereby a large lump of 8 kg stands out as a single find. The find layer is largely uniformly located at a depth of 30 - 40 cm in a glacial loose sediment soil. Microprobe, SEM-EDS, TEM and EBSD analyses determined as main minerals gupeiite and xifengite, subordinately hapkeite, naquite and linzhite. Besides the main elements Fe and Si of the matrix, more than 30 other chemical elements have been addressed so far, including uranium and various REE. Incorporated into the FESI matrix are the carbide minerals moissanite and titanium carbide as superpure crystals, and khamrabaevite, zirconium carbide, and uranium carbide, furthermore CAIs. SEM images indicate shock metamorphism. The present article describes the discovery history of this worldwide unique FESI occurrence with the exact find situations, as well as the very varied morphologies of the find particles with the macroscopically recognizable components and SEM EDS examples.
    VL  - 12
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Faculty of Philosophy, University of Würzburg, Würzburg, Germany

  • Oxford Instruments GmbH Nano Science, Wiesbaden, Germany

  • Carl Zeiss Microscopy GmbH, Oberkochen, Germany

  • Sections