| Peer-Reviewed

Comparative Study of the Reduction Process of Different Ring Structured Nitroxyl Spin Probes: An Electron Spin Resonance Study

Received: 23 March 2016     Accepted: 1 April 2016     Published: 26 April 2016
Views:       Downloads:
Abstract

Electron spin resonance spectroscopy (ESR) studies on the reduction process of nitroxyl spin probes were carried out for 1mM concentration of 14N-labeled pyrrolidine nitroxyl spin probes, 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (carbamoyl-PROXYL) and 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine -1-oxyl (carboxy-PROXYL), 14N-labeled piperidine nitroxyl spin probes, 4-methoxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (methoxy-TEMPO) and 4-acetamido-2,2,6,6-tetramethyl-piperidine-1-oxyl (acetamido-TEMPO) in 1 mM concentration of ascorbic acid as a function of time. The half-life time and decay rate were estimated. The piperidine nitroxyl spin probes show a short half-life time compared with that of pyrrolidine nitroxyl spin probes. This result indicates that the higher stability of pyrrolidine nitroxyl spin probes. The ESR was also recorded for 1mM concentration of pyrrolidine nitroxyl spin probes and piperidine nitroxyl spin probes in pure water using X-band ESR spectrometer. The ESR parameters such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were determined. These results indicate that the pyrrolidine nitroxyl spin probes have narrow line width and fast tumbling compared with the piperidine nitroxyl spin probes. Therefore, this study reveals that the pyrrolidine nitroxyl spin probes can act as good redox sensitive spin probes for free radical imaging.

Published in European Journal of Biophysics (Volume 4, Issue 2)
DOI 10.11648/j.ejb.20160402.11
Page(s) 8-15
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Electron Spin Resonances (ESR), Nitroxyl Spin Probe, Ascorbic Acid, Half Life Time, Decay Rate

References
[1] M. C. Krishna, S. Subramanian, P. Kuppusamy, and J. B. Mitchell, “Magnetic resonanc imaging for in vivo assessment of tissue oxygen concentration”, Semin Radiat Oncol vol. 11, no. 1, pp. 58-69, 2001.
[2] K. Yamada, D. Inoue, S. Matsumoto, and H. Utsumi, “In vivo measurement of redox status in streptozotocin-induced diabetic rat using targeted nitroxyl probes”, Antioxid. Redox Signal. vol. 6, no. 3, pp. 605–611, 2004.
[3] K. Kasazaki, K. Yasukawa, H. Sano, and H. Utsumi, “Non-invasive analysis of reactive oxygen species generated in NH4OH-induced gastric lesions of rats using a 300 MHz in vivo ESR technique”, Free Radic. Res. vol. 37. no.7, pp 757–766, 2003.
[4] F. Hyodo, K. H. Chuang, A. G. Goloshevsky, A. Sulima, G. L. Griffiths, J. B. Mitchell, A. P. Koretsky, and M. C. Krishna, “Brain redox imaging using blood-brain barrier-permeable nitroxide MRI contrast agent”, J Cereb Blood Flow Metab. vol. 28. no. 6, pp 1165-1174, 2008.
[5] K. Matsumoto, M. C. Krishna, and J. B. Mitchell, “Novel Pharmacokinetics Measurement Using Electron Paramagnetic Resonance Spectroscopy and Simulation of in Vivo Decay of Various Nitroxyl Spin Probes in Mouse Blood”, The Journal Of Pharmacology And Experimental Therapeutics. vol. 310, pp 1076-1083.
[6] K. I. Yamada, P. Kuppusamy, S. English, J. Yoo, A. Irie A, S. Subramanian, J. B. Mitchell, and M. C. Krishna, “Feasibility and assessment of non-invasive in vivo redox status using electron paramagnetic resonance imaging”, Acta Radiol. vol. 43, no.4, pp 433-440, 2002.
[7] A. Hirayama, K. Yoh, S. Nagase, A. Ueda, K. Itoch, N. Morito, K. Hirayama, S. Takahashi, M. Yamamoto, and A. Koyama, “EPR imaging of reducing activity in Nrf2 transcriptional factor-deficient mice”, Free Radic Biol Med. vol. 34, no.10, pp 1236-1242, 2003.
[8] A. Ueda, S. Nagase , H. Yokoyama, M. Tada, H. Noda, H. Ohya, H. Kamada, A. Hirayama, and A. Koyama, “Importance of renal mitochondria in the reduction of TEMPOL, a nitroxide radicals”, Mol Cell Biochem. vol. 244, no. 1-2, pp 119-124, 2003.
[9] K. Kasazaki, K. Yasukawa, H. Sona, K. Yamada, and H. Utsumi, “Application of in vivo ESR spectroscopy to pharmaceutical sciences: Evaluation of in vivo inhibitory mechanism of antigastric lesion drugs”, Appl. Magn. Reson. vol. 23, no.3, pp 585-595, 2003
[10] M. Yamato, T. Egashira, and H. Utsumi, “Applications of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke”, Free Radical Biology & Medicine. vol. 35, no. 12, pp 1619-1631, 2003.
[11] K. Yamada, I. Yamamiya, and H. Utsumi, “In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue”, Free Radic Biol Med. vol. 40, pp 2040-2046, 2006.
[12] Y. Kinoshita, K. Yamada, T. Yamasaki, H. Sadasue, K. Sakai, and H. Utsumi, “Development of novel nitroxyl radicals for controlling reactivity with ascorbic acid”, Free Radical Research, vol. 43 no. 6, pp 565-571, 2009.
[13] A. A. Bobko, I. A. Kirilyuk, I. A. Grigor’ ev, J. L. Zweier, and V. V. Kramtsov, “Reversible reduction of nitroxides to hydroxylaines: Roles for ascorbate and glutathione”, Free Radical Biology & Medicine, vol. 42, no. 3, pp 404-412, 2007.
[14] G. L. Millhauser, “Trends in Biochemical Sciences”, vol. 17, no. 11, pp 448-452, 1992
[15] H. M. Swartz, and G. S. Timmins, “The metabolism of nitroxides in cells and tissues. In: Rhodes”, C J., editor. Toxicology of the human environment: the critical role of free radicals. Taylor & Francis Inc.; London, New York: 2000. pp 91-111.
[16] O. Saphier, T. Silberstein, A. I. Shames, G. I. Likhtenshtein, E. Maimon, D. Mankuta, M. Mazor, M. Katz, D. Meyerstein, and N. Meyerstein, “The reduction of a nitroxide spin label as a probe of human blood antioxidant properties”, Free Radic. Res vol. 37 no. 3, pp 301–308, 2003.
[17] J. F. Keana, S. Pou, and G. M. Rosen, “Nitroxides as potential contrast enhancing agents for MRI application: influence of structure on the rate of reduction by rat hepatocytes, whole liver homogenate, subcellular fractions, and ascorbate”, Magn. Reson. Med. vol. 5, no. 6, pp. 525-536, 1987.
[18] Z. Zhelev, R. Bakalova, I. Aoki, K. Matsumoto, V. Gadjeva, K. Anzai, and I. Kanno, “Nitroxyl Radicals for Labeling of Conventional Therapeutics and Noninvasive Magnetic Resonance Imaging of Their Permeability for Blood-Brain Barrier: Relationship between Structure, Blood Clearance, and MRI Signal Dynamic in the Brain”, Molecular pharmaceutics. vol. 6, no. 2, pp. 504–512, 2009.
[19] P. Kuppusamy , H. Li, G. Ilangovan, A. J. Cardounel, J. L. Zweier, K. Yamada, M. C. Krishna, and J. B. Mitchell, “Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels”, Cancer Res. vol. 62, no. 1, pp. 307–12, 2002.
[20] S. M. Hahn, C. M. Krishna, A. Samuni, W. DeGraff, D. O. Cuscela, P. Johnstone , and J. B. Mitchell, “Potential use of nitroxides in radiation oncology”, Cancer Res. vol. 54, pp. 2006–2010s, 1994.
[21] H. Utsumi, K. Yamada, K. Ichikawa, K. Sakai, Y. Kinoshita, S. Matsumoto, M. Nagi, “Simultaneous molecular imaging of redox reactions monitored by Overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals”, Proc. Natl. Acad. Sci. vol. 103, pp. 1463-1468, 2006.
[22] A. Milton Franklin Benial, M. Kumara Dhas, K. Ichikawa, K. Yamada, F. Hyodo, A. Jawahar, and H. Utsumi, “Permeability Studies of Redox-Sensitive Nitroxyl Spin Probes Through Lipid Membranes Using an L-Band ESR Spectrometer”, Appl Magn Reson vol. 44, no. 4, pp. 439-447, 2013.
[23] Y. Kinoshita, K. Yamada, T. Yamasaki, F. Mito, M. Yamato, N. Kosem, H. Deguchi, C. Shirahama, Y. Ito, K. Kitagawa, N. Okukado, K. Sakai, and H. Utsumi, “In vivo evaluation of novel nitroxyl radicals with reduction stability”, Free Radic Biol Med. Vol. 49, no. 11, pp. 1703-1709, 2010.
[24] K. Matsumoto, F. Hyodo, A. Matsumoto, A. P. Koretsky, A. L. Sowers, J. B. Mitchell, and M. C. Krishna, “High-Resolution Mapping of Tumor Redox Status by Magnetic Resonance Imaging Using Nitroxides as Redox-Sensitive Contrast Agents”, Clin Cancer Res. vol. 12, no. 8, pp. 2455-2462, 2006.
[25] G. Redler, E. D. Barth, K. S. Bauer, Jr., J. P. Y. Kao, G. M. Rosen, and H. J. Halpern, “In Vivo Electron Paramagnetic Resonance Imaging of Differential Tumor Targeting Using cis-3,4-Di(Acetoxymethoxycarbonyl)-2,2,5,5-Tetramethyl-1-Pyrrolidinyloxyl”, Magn Reson Med. vol. 71, no. 4, pp. 1650-1656, 2014.
[26] H. Utsumi, K. Yasukawa, T. Soeda, K. Yamada, R. Shigemi, T. Yao, and M. Tsuneyoshi, “Noninvasive Mapping of Reactive Oxygen Species by in Vivo Electron Spin Resonance Spectroscopy in Indomethacin- Induced Gastric Ulcers in Rats”, The J. Pharmacol Exp. Ther. vol. 317, no. 1, pp. 228–235, 2006.
[27] M. Yamato, T. Shiba, K. Yamada, T. Watanabe and H. Utsumi, “Noninvasive assessment of the brain redox status after transient middle cerebral artery occlusion using Overhauser-enhanced magnetic resonance imaging”, Journal of Cerebral Blood Flow & Metabolism, vol. 29, pp. 1655–1664, 2009.
[28] H. G. Fujii, H. Sato-Akaba, M. C Emoto, K. Itoh, Y. Ishihara and H. Hirata, “Noninvasive mapping of the redox status in septic mouse by in vivo electron paramagnetic resonance imaging”, Magn. Reson. Imaging. vol. 31, no. 1, pp. 130-138, 2013.
[29] M. C. Krishna, S. English, K. Yamada, J. Yoo, R. Murugesan, N. Devasahayam, J. A. Cook, K. Golman, J. H. Ardenkjaer-Larsen, S. Subramanian and J. B. Mitchell, “Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration”, Proc. Natl. Acad. Sci. USA vol. 99, no. 4, pp. 2216-2221, 2002.
[30] E. M. Gale, S. Mukherjee, C. Liu, G. S. Loving, P. Caravan, “Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes”, Inorg Chem. vol. 53, no. 19, pp. 10748-61, 2014.
[31] S. Matsumoto, K. Saito, Y. Takakusagi, M. Matsuo, J. P. Munasinghe, H. D. Morris, M. J. Lizak, H. Merkle, K. Yasukawa, N. Devasahayam, S. Suburamanian, J. B. Mitchell, M. C. Krishna, “In vivo imaging of tumor physiological, metabolic, and redox changes in response to the anti-angiogenic agent sunitinib: longitudinal assessment to identify transient vascular renormalization”, Antioxid Redox Signal. vol. 21, no. 8, pp. 1145-55, 2014.
[32] G. Bacic, A. Pavicevic, F. Peyrot, “Invivo evaluation of different alternation of redox status by studying pharmacokinetics of nitroxide using magnetic resonance techniques”, Redox Biol. doi: 10.1016/j.redox.2015.10.007, 2016.
[33] M. C. Emoto, S. Sato, H. G. Fujii, “Development of nitroxide-based theranostic compound that act both as anti-inflammatory drugs and brain redox imaging probes in MRI”, Magn Reson Chem. doi: 10.1002/mrc.4431, 2016.
[34] F. Hyodo, S. Ito, K. Yasukawa, R. Kobayashi, H. Utsumi, “Simultaneous and Spectroscopic Redox Molecular Imaging of Multiple Free Radical Intermediates Using Dynamic Nuclear Polarization-Magnetic Resonance Imaging”, Anal. Chem. vol. 86, pp. 7234-7238, 2014.
[35] A. Milton Franklin Benial, K. Ichikawa, R. Murugesan, K. Yamada, H. Utsumi, “Dynamic nuclear polarisation properties of nitroxyl radicals used in overhauser-enhanced MRI for simultaneous molecular imaging”, J. Magn. Reson. vol. 182, pp. 273-282, 2006.
[36] A. Milton Franklin Benial, M. Kumara Dhas, A. Jawahar, “Rotational correlation time studies on nitroxyl radicals using 300 MHz ESR spectrometer in high viscous liquid”, Appl Magn Reson. vol. 40, pp. 311-319, 2011.
[37] I. Nicholson, D. J. Lurie and F. J. L. Robb, “The applications of proton electron double resonance imaging technique to proton mobility studies”, J. Magn. Reson. Ser. B, vol. 104, pp. 250-255, 1994.
[38] P. F. Knowles, D. Marsh, H. W. E. Rattle, An Introduction to the Theory and Practice of NMR and ESR in Biological Systems Magnetic Resonance of Bio-molecules: An Introduction to the Theory and Practice of NMR and ESR in Biological Systems, Wiley, London, 1976.
[39] M. J. G. W. Roozen and M. A. Hemminga, “Molecular motion in sucrose-water mixtures in the liquid and glassy state as studied by spin probe ESR”. J. Phys. Chem. vol. 94 no. 19, pp. 7326-7329, 1990.
[40] F. Yoshino, A. Yoshida, N. Umigai, K. Kubo and M. C. Lee, “Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke prone spontaneously hypertensive rats (SHRSPs) brain” J. Clin. Biochem. Nutr. vol. 49, no. 3, pp. 182–187, 2011.
[41] K. Takeshita, K. Kawaguchi, K. Fujii-Aikawa, M. Ueno, S. Okazaki, M. Ono, M.C. Krishna, P. Kuppusamy, T. Ozawa, and N. Ikota, “Heterogeneity of Regional Redox Status and Relation of the Redox Status to Oxygenation in a Tumor Model, Evaluated Using Electron Paramagnetic Resonance Imaging”, Cancer Res. vol. 70, no. 10, pp. 4133-4140, 2010.
[42] G. L. Caia, O. V. Efimova, M. Velayutham, M. A. El-Mahdy, T. M. Abdelghany, E. Kesselring, S. Petryakov, Z. Sun, A. Samouilov and J. L. Zweier, “Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging”, J. Magn.Reson. vol. 216, pp. 21-27, 2012.
[43] R. M. Davis, S. Matsumoto, M. Bernardo, A. Sowers, K. Matsumoto, M. C. Krishna and J. B. Mitchell, “Magnetic resonance imaging of organic contrast agents in mice: capturing the whole-body redox landscape”, Free Radic. Biol. Med. vol. 50, pp. 459-468, 2011.
[44] R. Amarowicz, R. B. Pegg, P. Rahimi-Moghaddam, B. Barl and J. A. Weil, “Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies”, Food Chemistry. vol. 84, pp. 551-562, 2004.
[45] S. Mathew and T. E. Abraham, “In vitro antioxidant activity and scavenging effects of cinnamomum verum leaf extract assayed by different methodologies”, Food Chem. Toxicol. vol. 44, pp. 198-206, 2006.
Cite This Article
  • APA Style

    V. Meenakumari, A. Jawahar, A. Milton Franklin Benial. (2016). Comparative Study of the Reduction Process of Different Ring Structured Nitroxyl Spin Probes: An Electron Spin Resonance Study. European Journal of Biophysics, 4(2), 8-15. https://doi.org/10.11648/j.ejb.20160402.11

    Copy | Download

    ACS Style

    V. Meenakumari; A. Jawahar; A. Milton Franklin Benial. Comparative Study of the Reduction Process of Different Ring Structured Nitroxyl Spin Probes: An Electron Spin Resonance Study. Eur. J. Biophys. 2016, 4(2), 8-15. doi: 10.11648/j.ejb.20160402.11

    Copy | Download

    AMA Style

    V. Meenakumari, A. Jawahar, A. Milton Franklin Benial. Comparative Study of the Reduction Process of Different Ring Structured Nitroxyl Spin Probes: An Electron Spin Resonance Study. Eur J Biophys. 2016;4(2):8-15. doi: 10.11648/j.ejb.20160402.11

    Copy | Download

  • @article{10.11648/j.ejb.20160402.11,
      author = {V. Meenakumari and A. Jawahar and A. Milton Franklin Benial},
      title = {Comparative Study of the Reduction Process of Different Ring Structured Nitroxyl Spin Probes: An Electron Spin Resonance Study},
      journal = {European Journal of Biophysics},
      volume = {4},
      number = {2},
      pages = {8-15},
      doi = {10.11648/j.ejb.20160402.11},
      url = {https://doi.org/10.11648/j.ejb.20160402.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ejb.20160402.11},
      abstract = {Electron spin resonance spectroscopy (ESR) studies on the reduction process of nitroxyl spin probes were carried out for 1mM concentration of 14N-labeled pyrrolidine nitroxyl spin probes, 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (carbamoyl-PROXYL) and 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine -1-oxyl (carboxy-PROXYL), 14N-labeled piperidine nitroxyl spin probes, 4-methoxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (methoxy-TEMPO) and 4-acetamido-2,2,6,6-tetramethyl-piperidine-1-oxyl (acetamido-TEMPO) in 1 mM concentration of ascorbic acid as a function of time. The half-life time and decay rate were estimated. The piperidine nitroxyl spin probes show a short half-life time compared with that of pyrrolidine nitroxyl spin probes. This result indicates that the higher stability of pyrrolidine nitroxyl spin probes. The ESR was also recorded for 1mM concentration of pyrrolidine nitroxyl spin probes and piperidine nitroxyl spin probes in pure water using X-band ESR spectrometer. The ESR parameters such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were determined. These results indicate that the pyrrolidine nitroxyl spin probes have narrow line width and fast tumbling compared with the piperidine nitroxyl spin probes. Therefore, this study reveals that the pyrrolidine nitroxyl spin probes can act as good redox sensitive spin probes for free radical imaging.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Comparative Study of the Reduction Process of Different Ring Structured Nitroxyl Spin Probes: An Electron Spin Resonance Study
    AU  - V. Meenakumari
    AU  - A. Jawahar
    AU  - A. Milton Franklin Benial
    Y1  - 2016/04/26
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ejb.20160402.11
    DO  - 10.11648/j.ejb.20160402.11
    T2  - European Journal of Biophysics
    JF  - European Journal of Biophysics
    JO  - European Journal of Biophysics
    SP  - 8
    EP  - 15
    PB  - Science Publishing Group
    SN  - 2329-1737
    UR  - https://doi.org/10.11648/j.ejb.20160402.11
    AB  - Electron spin resonance spectroscopy (ESR) studies on the reduction process of nitroxyl spin probes were carried out for 1mM concentration of 14N-labeled pyrrolidine nitroxyl spin probes, 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (carbamoyl-PROXYL) and 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine -1-oxyl (carboxy-PROXYL), 14N-labeled piperidine nitroxyl spin probes, 4-methoxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (methoxy-TEMPO) and 4-acetamido-2,2,6,6-tetramethyl-piperidine-1-oxyl (acetamido-TEMPO) in 1 mM concentration of ascorbic acid as a function of time. The half-life time and decay rate were estimated. The piperidine nitroxyl spin probes show a short half-life time compared with that of pyrrolidine nitroxyl spin probes. This result indicates that the higher stability of pyrrolidine nitroxyl spin probes. The ESR was also recorded for 1mM concentration of pyrrolidine nitroxyl spin probes and piperidine nitroxyl spin probes in pure water using X-band ESR spectrometer. The ESR parameters such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were determined. These results indicate that the pyrrolidine nitroxyl spin probes have narrow line width and fast tumbling compared with the piperidine nitroxyl spin probes. Therefore, this study reveals that the pyrrolidine nitroxyl spin probes can act as good redox sensitive spin probes for free radical imaging.
    VL  - 4
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, NMSSVN College, Nagamalai, Madurai, Tamilnadu, India

  • Department of Chemistry, NMSSVN College, Nagamalai, Madurai, Tamilnadu, India

  • Department of Physics, NMSSVN College, Nagamalai, Madurai, Tamilnadu, India

  • Sections