| Peer-Reviewed

Natural Basis for the Proliferation of Malaria Vectors in Northern Benin (West Africa)

Received: 19 September 2020     Accepted: 29 September 2020     Published: 22 March 2021
Views:       Downloads:
Abstract

Background: Malaria transmission is based on four essential elements: the vector, the parasite, humans and the environment. However, of the four elements, the environment is not sufficiently exploited. Methods: In the research presence carried out in 6 localities in North Benin, we used a microscopic vision of the health geographer, focusing on certain components of geography, entomology and meteorology to show what to show spatial disparities in malaria transmission using Arcgis 10.4, Global Mapper and SPSS 21.0 for regression and correlation analysis. Results: The results of our research show that the slopes are unstable. Also, the lower the altitude, the lower the water kinetics and consequently a lot of water stagnation favourable for the development of mosquito breeding sites. The explanatory power of the regression model means that 54.3% of the variation in positive mosquito breeding is explained by human population density. Conclusions: Benin must make significant progress in the elimination of malaria using a new effort to understand the ecology of vector mosquitoes based on spatial disparities in the fight against malaria.

Published in European Journal of Biophysics (Volume 9, Issue 1)
DOI 10.11648/j.ejb.20210901.15
Page(s) 30-36
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

GIS, Climate, Anopheles gambiae (s.l.), Vector Control, Benin

References
[1] WHO (2017). Malaria elimination: report from the inaugural global forum of countries with potential to eliminate malaria by 2020. Wkly Epidemiol Rec.; 92 (39): 578–586.
[2] Daniel, M. P., Verena I. C., Sasithon P., Rose M. G., & François H. N. (2015); Malaria ecology along the Thailand–Myanmar border. Malaria journal. 14 (388).
[3] Mark, L. W., Donald, J. K., Emmanuel A., Myriam A., Laura C., Marcelo U. F., Daouda N., Don P. M., & Alex E. (2015). Urban Malaria: Understanding its Epidemiology, Ecology, and Transmission across Seven Diverse ICEMR Network Sites. Am J Trop Med Hyg. 93 (3 Suppl): 110–123.
[4] Humphrey D. Mazigo, Susan F. Rumisha, Mercy G. Chiduo, Veneranda M. Bwana, & Leonard E. G. (2017). Mboera. Malaria among rice farming communities in Kilangali village, Kilosa district, Central Tanzania: prevalence, intensity and associated factors. Infect Disease Poverty, 6: 101.
[5] Humphrey D. M., Isolide S. M., Susan F. R., Eliningaya J. K.., & Leonard E. G. M. (2019). Rice farmers’ perceptions and acceptability in the use of a combination of biolarvicide (Bacillus thuringiensis var. israeliensis) and fertilizers application for malaria control and increase rice productivity in a rural district of central Tanzania. Malaria Journal. volume 18, Article number: 71.
[6] Pages et al., (2007) Themba Mzilahowa, Madalitso Luka-Banda, Veronica Uzalili, Don P Mathanga, Carl H Campbell, Jr., Mavuto Mukaka, & John E Gimnig. Risk factors for Anopheles mosquitoes in rural and urban areas of Blantyre District, southern Malawi. Malawi Med J. 2016 Dec; 28 (4): 154–158.
[7] Santa C., Valley Water District (SCVWD).(2017). West valley page of the Santa Clara Valley Water District web site. http://www.valleywater.org/services/WestValley.aspx
[8] Drobot, R.., and Serban P. (1999). Aplicatii de hidrologie si gospodarirea apelor (Application of Hydrology and Water Resources Management). Ed. HGA, Bucuresti, Romania.
[9] Le Baux, V. R. (1990). ‘‘ Les risques majeurs de S. D. A. U. R. F’’: Maitrise de l’urbanisation autour des sites industriels à haut risque, Guide édité par le Secrétaire d’Etat auprès du Premier Ministre chargé de l’Environnement, Délégation aux Risques Majeurs au ministère de l’environnement. Paris, 164.
[10] Chapter 3 - elements of topography http://www.fao.org/docrep/r4082e/r4082e04.htm#TopOfPagef
[11] Geier, M., & Boeckh J. A. (1999). new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Exp Appl.; 92: 9–19. doi: 10.1046/j.1570-7458.1999.00519.x. [CrossRef]
[12] Yaw A. A., Andrew K. G., and Guiyun Y. 2012. The Ecology of Anopheles Mosquitoes under Climate Change: Case Studies from the Effects of Environmental Changes in East Africa Highlands. HSS public-access, Author manuscript, 1249: 204–210.
[13] Sinsin, B., & Kampmann. D., (eds) Cotonou & Frankfurt. (2010). Atlas de la Biodiversité de l’Afrique de l’Ouest Biodiversity Atlas of West Africa, Tome | Volume I: Benin /Main ISBN 978-3-9813933-0-9, hardcover ISBN 978-3-9813933-3-0, paperback.
[14] Sare B. A, Totin V. S. H, Houssou C. S, Sinsin B. (2015). Variation du régime pluviométrique de la périphérie de la réserve de biosphère transfrontalière du w au Bénin. XXVIIIe Colloque de l’Association Internationale de Climatologie, Liège. 603.
[15] Houndénou, C. (1999). Variabilité climatique et maïsiculture en milieu tropical humide. L’exemple du Bénin, diagnostic et modélisation. Thèse de Doctorat de l'Université de Bourgogne Dijon, France, 390 p.
[16] Vissin, E. W. (2007). Impact de la variabilité climatique et de la dynamique des états de surface sur les écoulements du bassin béninois du fleuve Niger. Thèse de Doctorat de l'Université de Bourgogne Dijon, France, 280 p.
[17] Vodounon T. S. H., Totin V, Djohy L. G., Amoussou E., Boko M. (2016). Instabilité du régime climatique et dynamique des systèmes pastoraux dans la commune de sinende au Nord-Benin. Revue des Sciences de l’Environnement, Laboratoire de Recherches Biogéographiques et d’Etudes Environnementales (Université de Lomé), 2016, pp. 157-178. ffhal-01552159f.
[18] Harbach R. (1994). Review of the internal classification of the genus Anopheles (Diptera: Culicidae): the foundation for comparative sytematics and phylogenetic research. Bull Entomol Res,; 84: 331–42.
[19] UEMOA, les grandes orientations de la politique commune d’amelioration de de l’environnement (PCAE), annexe 2.
[20] a, b et c Annales des mines: Recueil de mémoires sur l'exploitation des mines, Paris, Treuttel et Wurtz, 1817, 536 p., p. 270.
[21] a et b Charles, B., V., & Charles V. (1869). Éléments de géométrie descriptive, Paris, Hachette,, 140 p., p. 122.
[22] Haque, U., Magalhaes, R. J. S., Reid, H. L., Clements, A. C. A.; Ahmed, S. M.; Islam, A.; Yamamoto, T.; Haque, R.; & Glass, G. E. (2010). Spatial prediction of malaria prevalence in an endemic area of Bangladesh. Malar. J. 9-120.
[23] Haque, U.; Huda, M.; Hossain, A.; Ahmed, S. M.; Moniruzzaman, M.; & Haque, R. (2009). Spatial malaria epidemiology in Bangladeshi highlands. Malar. J. 8-185.
[24] Haque, U., Sunahara, T., Hashizume, M.; Shields, T.; Yamamoto, T.; Haque, R.; & Glass, G. E. (2011). Malaria prevalence, risk factors and spatial distribution in a hilly forest area of Bangladesh. PLoS One., 6, doi: 10.1371/journal.pone.0018908.
[25] Haque, U.; Glass, G. E.; Bomblies, A.; Hashizume, M.; Mitra, D.; Noman, N.; Haque, W.; Kabir, M. M.; Yamamoto, T.; & Overgaard, H. J. (2013). Risk factors associated with clinical malaria episodes in Bangladesh: A longitudinal study. Am. J. Trop. Med. Hyg., 88, 727–732.
[26] Haque, U.; Scott, L. M.; Hashizume, M.; Fisher, E.; Haque, R.; Yamamoto, & T.; Glass, G. E. (2012). Modelling malaria treatment practices in Bangladesh using spatial statistics. Malar. J., 11, doi: 10.1186/1475-2875-11-63.
[27] Galagan, S. R.; Prue, C. S.; Khyang, J.; Khan, W. A.; Ahmed, S.; Ram, M.; Alam, M. S.; Haq, M. Z.; Akter, J.; & Streatfield, P. K. (2014). The practice of jhum cultivation and its relationship to plasmodium falciparum infection in the Chittagong hill districts of Bangladesh. Am. J. Trop. Med. Hyg., 91, 374–383.
[28] Rahman, A.; Kogan, F.; Roytman, L. (2006). Short report: Analysis of malaria cases in Bangladesh with remote sensing data. Am. J. Trop. Med. Hyg., 74, 17–19.
[29] Rahman, A.; Krakauer, N.; Roytman, L.; Goldberg, M.; & Kogan, F. (2010). Application of advanced very high resolution radiometer (AVHRR)-based vegetation health indices for estimation of malaria cases. Am. J. Trop. Med. Hyg., 82, 1004–1009.
[30] Khan, W. A.; Sack, D. A.; Ahmed, S.; Prue, C. S.; Alam, M. S.; Haque, R.; Khyang, J.; Ram, M.; Akter, J.; & Nyunt, M. M. (2011). Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: A prospective surveillance. Malar. J., 10, doi: 10.1186/1475-2875-10-124.
[31] Haque, U.; Magalhaes, R. J. S.; Reid, H. L.; Clements, A. C. A.; Ahmed, S. M.; Islam, A.; Yamamoto, T.; Haque, R.; & Glass, G. E. (2010). Spatial prediction of malaria prevalence in an endemic area of Bangladesh. Malar. J., 9, doi: 10.1186/1475-2875-9-120.
[32] Haque, U.; Ahmed, S. M.; Hossain, S.; Huda, M.; Hossain, A.; Alam, M. S.; Mondal, D.; Khan, W. A.; Khalequzzaman, M.; & Haque, R. (2009). Malaria prevalence in endemic districts of Bangladesh. PLoS One, 4, e6737.
[33] Glass, G.; Alam, M. S.; Khan, W. A.; Sack, D. A.; & Sullivan, D. J. (2011). Spatial clustering of malaria cases during low-transmission season in Kuhalong, Bangladesh. In Proceedings of the 13th Ascon Conference, Dhaka, Bangladesh.
[34] Alam, M. S.; Chakma, S.; Al-Amin, H. M.; Elahi, R.; Mohon, A. N.; Khan, W. A.; Haque, R.; Glass, G. E.; Sack, D. A.; & Sullivan, D. J. (2012). Role of artificial containers as breeding sites for anopheline mosquitoes in Malaria hypo endemic areas of rural Bandarban, Bangladesh: Evidence form a baseline survey. In Proceedings of the Astmh Conference, Atlanta, GA, USA.
[35] Stoops, C. A.; Gionar, Y. R.; Shinta; Sismadi, P.; Rachmat, A.; Elyazar, I. F.; & Sukowati, S. (2008). Remotely-sensed land use patterns and the presence of anopheles larvae (diptera: Culicidae) in Sukabumi, West Java, Indonesia. J. Vector. Ecol., 33, 30–39.
[36] Nmor, J. C.; Sunahara, T.; Goto, K.; Futami, K.; Sonye, G.; Akweywa, P.; Dida, G.; Minakawa, N. (2013). Topographic models for predicting malaria vector breeding habitats: Potential tools for vector control managers. Parasit. Vector, 6, doi: 10.1186/1756-3305-6-14.
[37] Tadesse, D., Mekonnen, Y., & Tsehaye, A. (2011). Characterization of Mosquito Breeding Sites in and in the Vicinity of Tigray Microdam. Ethiop J Health Sci. Mar; 21 (1): 57–66.
Cite This Article
  • APA Style

    Andre Sominahouin, Roseric Azondekon, Sahabi Bio Bangana, Casimir Kpanou, Germain Gil Padonou, et al. (2021). Natural Basis for the Proliferation of Malaria Vectors in Northern Benin (West Africa). European Journal of Biophysics, 9(1), 30-36. https://doi.org/10.11648/j.ejb.20210901.15

    Copy | Download

    ACS Style

    Andre Sominahouin; Roseric Azondekon; Sahabi Bio Bangana; Casimir Kpanou; Germain Gil Padonou, et al. Natural Basis for the Proliferation of Malaria Vectors in Northern Benin (West Africa). Eur. J. Biophys. 2021, 9(1), 30-36. doi: 10.11648/j.ejb.20210901.15

    Copy | Download

    AMA Style

    Andre Sominahouin, Roseric Azondekon, Sahabi Bio Bangana, Casimir Kpanou, Germain Gil Padonou, et al. Natural Basis for the Proliferation of Malaria Vectors in Northern Benin (West Africa). Eur J Biophys. 2021;9(1):30-36. doi: 10.11648/j.ejb.20210901.15

    Copy | Download

  • @article{10.11648/j.ejb.20210901.15,
      author = {Andre Sominahouin and Roseric Azondekon and Sahabi Bio Bangana and Casimir Kpanou and Germain Gil Padonou and Razaki Osse and Benoît Assogba and Fiacre Agossa and Filemon Tokponon and Martin Cossi Akogbéto},
      title = {Natural Basis for the Proliferation of Malaria Vectors in Northern Benin (West Africa)},
      journal = {European Journal of Biophysics},
      volume = {9},
      number = {1},
      pages = {30-36},
      doi = {10.11648/j.ejb.20210901.15},
      url = {https://doi.org/10.11648/j.ejb.20210901.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ejb.20210901.15},
      abstract = {Background: Malaria transmission is based on four essential elements: the vector, the parasite, humans and the environment. However, of the four elements, the environment is not sufficiently exploited. Methods: In the research presence carried out in 6 localities in North Benin, we used a microscopic vision of the health geographer, focusing on certain components of geography, entomology and meteorology to show what to show spatial disparities in malaria transmission using Arcgis 10.4, Global Mapper and SPSS 21.0 for regression and correlation analysis. Results: The results of our research show that the slopes are unstable. Also, the lower the altitude, the lower the water kinetics and consequently a lot of water stagnation favourable for the development of mosquito breeding sites. The explanatory power of the regression model means that 54.3% of the variation in positive mosquito breeding is explained by human population density. Conclusions: Benin must make significant progress in the elimination of malaria using a new effort to understand the ecology of vector mosquitoes based on spatial disparities in the fight against malaria.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Natural Basis for the Proliferation of Malaria Vectors in Northern Benin (West Africa)
    AU  - Andre Sominahouin
    AU  - Roseric Azondekon
    AU  - Sahabi Bio Bangana
    AU  - Casimir Kpanou
    AU  - Germain Gil Padonou
    AU  - Razaki Osse
    AU  - Benoît Assogba
    AU  - Fiacre Agossa
    AU  - Filemon Tokponon
    AU  - Martin Cossi Akogbéto
    Y1  - 2021/03/22
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ejb.20210901.15
    DO  - 10.11648/j.ejb.20210901.15
    T2  - European Journal of Biophysics
    JF  - European Journal of Biophysics
    JO  - European Journal of Biophysics
    SP  - 30
    EP  - 36
    PB  - Science Publishing Group
    SN  - 2329-1737
    UR  - https://doi.org/10.11648/j.ejb.20210901.15
    AB  - Background: Malaria transmission is based on four essential elements: the vector, the parasite, humans and the environment. However, of the four elements, the environment is not sufficiently exploited. Methods: In the research presence carried out in 6 localities in North Benin, we used a microscopic vision of the health geographer, focusing on certain components of geography, entomology and meteorology to show what to show spatial disparities in malaria transmission using Arcgis 10.4, Global Mapper and SPSS 21.0 for regression and correlation analysis. Results: The results of our research show that the slopes are unstable. Also, the lower the altitude, the lower the water kinetics and consequently a lot of water stagnation favourable for the development of mosquito breeding sites. The explanatory power of the regression model means that 54.3% of the variation in positive mosquito breeding is explained by human population density. Conclusions: Benin must make significant progress in the elimination of malaria using a new effort to understand the ecology of vector mosquitoes based on spatial disparities in the fight against malaria.
    VL  - 9
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Ministry of Health, National Malaria Control Program (NMCP), Cotonou, Benin

  • Entomological Research Center of Cotonou, Cotonou, Bénin

  • Sections