Research Article | | Peer-Reviewed

A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem

Received: 24 January 2025     Accepted: 17 July 2025     Published: 3 September 2025
Views:       Downloads:
Abstract

In this paper, we obtain convergence of a posteriori error indicator to 0 when the mesh size h goes to 0 for the finite element approximation of source-boundary control problems governed by a system of semi-linear elliptic equations. We give the upper and lower bound of a posteriori error, and convergency of a posteriori error indicator.

Published in Mathematics Letters (Volume 11, Issue 2)
DOI 10.11648/j.ml.20251102.12
Page(s) 41-59
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2025. Published by Science Publishing Group

Keywords

Semi-linear Elliptic Equations, Source Control, A Posteriori Error Estimate

References
[1] Wei Gong et al., Adaptive finite element method for parabolic equations with Dirac measure, Comput. Methods in Applied Mechanics and engineerig, 328(2018) 217-241.
[2] Chunjia Bi et al., Two grid finite element method and it’s a posteriori error Estimates for a non-monotone quasi-linear elliptic problem under minimal regularity of data, Computers and Mathematics with Applications, 76(2018) 98-112.
[3] Chuanjun Chen et al., A posteriori error Estimates of two grid finite volume element method for non-linear elliptic problem, Computers and Mathematics with Applications, 75(2018) 1756-1766.
[4] Xingyang Ye, Chanju Xu, A Posteriori error estimates for the fractional optimal control problems, Journal of Inequalities and Applications, 141(2015), 1-13.
[5] Lin Li et al., A posteriori error Estimates of spectral method for non-linear parabolic optimal control problem, Journal of inequalities and applications, 138(2018) 1-23.
[6] E. Casas et al., Error Estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45(2006) 1586-1611.
[7] D. Y. Shi, H. J. Yang, Superconvergence analysis of finite element method for time-fractional thermistor problem, Appl. Math. Comput., 323 (2018) 31-42.
[8] D. Y. Shi, H. J. Yang, Superconvergence analysis of nonconforming FEM fornonlinear time-dependent thermistor problem, Appl. Math. and Compu., 347 (2019) 210-224.
[9] Y. Chen, L. Chen, X. Zhang, Two-grid method for nonlinear parabolic equations by expande mixed finite element methods, Numer. Methods Part. Diff. Equ., 29(2013) 1238-1256.
[10] Meyer C., Error estimates for the finite element approximation of an elliptic control problem with pointwise state and control constraints, Control and Cybern., 37(1), 51-83 (2008).
[11] Wollner W., A posteriori error estimates for a finite element distretization of Interior point methods for an elliptic optimization problem with state constraints, Numer. Math. Vol. 120, No. 4, 133-159 (2012).
[12] A. Rosch, D. Wachsmuth, A posteriori error estimates for optimal control problems with state and control constraints, Numerische Mathematik, Vol. 120, No. 4, 733-762 (2012).
[13] O. Benedix, B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints, Comput. Optim. Appl., 44(1), 3-25 (2009).
[14] Dib S., Girault V., Hecht F. and Sayah T., A posteriori error estimates for Darcy’s problem coupled with the heat equation, ESAIM Mathematical Modelling and Numerical Analysis,
[15] A. Allenes, E. Otarola, R. Rankin. A posteriori error estimation for a PDE constrained optimization problem involving the generalized Oceen equations, SIAM J. Sci. Comput., Vol. 40, No. 4, A2200-A2233, 2018.
[16] Natalia Kopteva. Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comp., 88(319): 2135-2155, 2019.
[17] Xiangcheng Zheng and Hong Wang. Optimal-order error estimates finit element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal., 41(2): 1522-1545, 2021.
[18] Natalia Kopteva. Pointwise-in-time a posteriori error control for time-fractional parabolic equations. Appl. Math. Lett., 123: Paper No. 107515, 8, 2022.
Cite This Article
  • APA Style

    Kim, C. I., Kang, J. H., Sok, G. C. (2025). A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem. Mathematics Letters, 11(2), 41-59. https://doi.org/10.11648/j.ml.20251102.12

    Copy | Download

    ACS Style

    Kim, C. I.; Kang, J. H.; Sok, G. C. A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem. Math. Lett. 2025, 11(2), 41-59. doi: 10.11648/j.ml.20251102.12

    Copy | Download

    AMA Style

    Kim CI, Kang JH, Sok GC. A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem. Math Lett. 2025;11(2):41-59. doi: 10.11648/j.ml.20251102.12

    Copy | Download

  • @article{10.11648/j.ml.20251102.12,
      author = {Chang Il Kim and Jong Hyok Kang and Gi Chol Sok},
      title = {A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem
    },
      journal = {Mathematics Letters},
      volume = {11},
      number = {2},
      pages = {41-59},
      doi = {10.11648/j.ml.20251102.12},
      url = {https://doi.org/10.11648/j.ml.20251102.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ml.20251102.12},
      abstract = {In this paper, we obtain convergence of a posteriori error indicator to 0 when the mesh size h goes to 0 for the finite element approximation of source-boundary control problems governed by a system of semi-linear elliptic equations. We give the upper and lower bound of a posteriori error, and convergency of a posteriori error indicator.
    },
     year = {2025}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem
    
    AU  - Chang Il Kim
    AU  - Jong Hyok Kang
    AU  - Gi Chol Sok
    Y1  - 2025/09/03
    PY  - 2025
    N1  - https://doi.org/10.11648/j.ml.20251102.12
    DO  - 10.11648/j.ml.20251102.12
    T2  - Mathematics Letters
    JF  - Mathematics Letters
    JO  - Mathematics Letters
    SP  - 41
    EP  - 59
    PB  - Science Publishing Group
    SN  - 2575-5056
    UR  - https://doi.org/10.11648/j.ml.20251102.12
    AB  - In this paper, we obtain convergence of a posteriori error indicator to 0 when the mesh size h goes to 0 for the finite element approximation of source-boundary control problems governed by a system of semi-linear elliptic equations. We give the upper and lower bound of a posteriori error, and convergency of a posteriori error indicator.
    
    VL  - 11
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, University of Science, Pyongyang, DPR Korea

  • Department of Mathematics, University of Science, Pyongyang, DPR Korea

  • Department of Mathematics, University of Science, Pyongyang, DPR Korea

  • Sections