The increasing pressure on the forests ecosystem, led by the need for new areas for agricultural activities in developing regions, is the main cause of the rising occurrence of wildfires that causes damage to these ecosystems. In Mozambique, uncontrolled wildfires are one of the environmental problems, and for its damage control, combat and mitigation are needed a greater efficiency in their detection and monitoring, as the lack of information on the location and extent of burnt area affect the estimation of its real impact on the ecosystem. This study was carried out as a result of increasing burnt areas in the Gilé Nacional Reserve (GNR) between 2001 and 2002. This study aimed to analyze spatial and temporal segregation of fires using satellite images, the results show that the maximum frequency of 15 times in 10 years, corresponding to a mean fire return interval of 3.9 years, with an average of 828 annual fires, registered greatly in August and September, resulting on 229.62 km2 of burnt area, a feature average intensity of 25.09 Mega Watts, being justified in 99% by altitude, slope, and aspect of the plot. The equation developed for the intensity of fires in the GNR is Y=52.504430, 0.061136*Forests - 0.002052* Appearance + 0.067099*Slope + ε.
Published in | Research & Development (Volume 2, Issue 4) |
DOI | 10.11648/j.rd.20210204.12 |
Page(s) | 83-96 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Spatial Analysis, Temporal Variability of Fire, Land Cover Change
[1] | Agee, J. K. (2009). Fire Ecology of Pacific Northwest Forests. Washington DC, United States of America: Island Press. |
[2] | Albini, F. A. (1976). Estimating Wildfire Behavior and Effects. Marana, Arizona, U.S.A: USDA Forest Service - General Technical Report INT-30. |
[3] | Argñaraz, J. P., Pizarro, G. G., Zak, M., & Bellis, L. M. (2015). Fire Regime, Climate, and Vegetation in the Sierras de Córdoba, Argentina. Fire Ecology, 11 (1), 55-72. |
[4] | Arone, E. (2002). Análise Espacial e Temporal das Queimadas Florestais em Moçambique- Tese de Licenciatura em Física. Maputo, Moçambique: Faculdade de Ciências, Universidade Eduardo Mondlane. |
[5] | Backéus, I., Pettersson, B., Stromquist, L., & Ruffo, C. (2006). Tree communities and structural dynamics in miombo (Brachystegia–Julbernardia) woodland, Tanzania. Forest Ecology and Management, 171-178. |
[6] | Bahadur, K. K. (2009). Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal. Remote Sensing, 1, 1257-1272. DOI: 10.3390/rs1041257. |
[7] | Batista, A. C. (2006). Detecção de Incêndios Florestais por Satélites. Paraná: Universidade Federal do Paraná. |
[8] | Bond, W. J., & Keeley, J. E. (2005). Fire as a Global 'herbivore': the ecology and evolution of flammable ecosystems. TRENDS in Ecology and Evolution, 20, 1-8. |
[9] | Boschetti, L., Roy, D., & Hoffmann, A. A. (2009). MODIS Collection 5 Burned Area (Product - MCD45) - User's Guide (Vol. 2.0). Maryland: University of Maryland. |
[10] | Boschetti, L., Roy, D., Hoffmann, A. A., & Humber, M. (2013). MODIS Collection 5.1 Burned Area (Product - MCD45) - User Guide (Vol. 3.0). Maryland: University of Maryland. |
[11] | Cangela, A. d. (2014). Caracterização e Mapeamento do Regime de Queimadas na Reserva Nacional de Niassa. Maputo: DEF/FAEF/UEM. |
[12] | Chuvieco, E. (2008). Satellite Observation of biomass burning: implications in global change research. (E. Chuvieco, Ed.) New York, United States of America: Earth Observation and global change springer. |
[13] | Congalton, R. G. (1991). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Berkeley: Department of Forestry and Resource Management, University of California. |
[14] | De Oliveira, H. N. (1999). Segmentação e Classificação de Imagens Landsat TM. Curitiba: Universidade Federal do Paraná. |
[15] | De Sousa, A. M., Pereira, J. M., Mota, B. W., & Dos Santos, J. R. (2012). Análise da Distribuição de Fogos Ativos Detectados pelo Sensor ATSR 2 e sua Relação com Variáveis Demográficas, Ambientais e Infra-estruturas: Comparabilidade entre Métodos de Regressão OLS e GWR. Revista Brasileira de Cartografia, 64/5, 703-721. |
[16] | DeBano, L. F., Neary, D. G., & Ffolliot, P. F. (1998). Fire's Effects on Ecosystem. The United States of America. |
[17] | Dewees, P. A., Campbell, B. M., Katerere, Y., Sitoe, A., Cunningham, A. B., Angelsen, A., & Wunder, S. (2011). Managing the Miombo Woodlands of Southern Africa: Policies, Incentives, and Options for the Rural Poor. Washington DC.: Program on Forests (PROFOR). |
[18] | DNAC. (2010). Reserva Nacional do Gilé: Plano de Maneio 2012-2021. (A. Fusari, F. Lamarque, P. Chardonnet, & H. Boulet, Eds.) Maputo, Moçambique: Ministerio do Turismo/ Direcção Nacional de Áreas de Conservação (DNAC). |
[19] | Dwyer, E., Pereira, J. M., Grégoire, J.-M., & Da Camara, C. C. (1999). Characterization of the Spatio-Temporal Patterns of Global Fire Activity using Satellite Imagery for the Period April 1992 to March 1993. Lisboa, Portugal: Jornal of Biogeography. |
[20] | Falck, A. S., & Foster, P. R. (2005). Distribuição Espaço-Temporal de Incêndios nas Imediações de Pelotas. Pelotas: Universidade Federal de Pelotas/Departamento de Meteorologia. |
[21] | FAO. (1998). FAO Meeting on Public Policies Affecting Forest Fires (FAO Forest Paper 138 ed.). Rome, Italy: FAO (Food and Agriculture Organization of the United Nations. |
[22] | FAO. (2007). Fire management Global assessment (Forest Paper 151). Rome: FAO (Food and Agriculture Organization of The United Nations). |
[23] | Frost, P. (1996). The Ecology of Miombo Woodlands. In B. Campbell, The Miombo in Transition: Woodlands and Welfare in Africa (p. 273). Bogor, Indonésia: CIFOR (Center for International Forestry Research. |
[24] | Giglio, L., Csiszar, I., & Justice, C. O. (2006). Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Journal of Geophysical Research, 111, 1-12. DOI: 10.1029/2005JG000142. |
[25] | Giglio, L., Werf, G. R., Randerson, J. T., Collatz, G. J., & Kasibhatla, P. (2006). Global estimation of burned area using MODIS active fire observations. Maryland: Atmospheric Chemistry and Physics. |
[26] | GOFC-GOLD. (2014). A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains, and losses of carbon stocks in forests remaining forests, and forestation (Vols. COP20-1). Netherland: GOFC-GOLD Land Cover Project Office/ Wageningen University. |
[27] | Gojovic, V., & Todorovic, B. (2013). Spatial and temporal analysis of Fires in Serbia for period 2000-2013. International Conference “Natural Hazards – Links between Science and Practice”, (pp. 297-312). DOI: 10.2298/IJGI1303297G |
[28] | Govender, N., Trollope, W. S., & Van Wilgen, B. W. (2006). The effect of fire season, fire frequency, rainfall, and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43, 748-758. |
[29] | Govender, N., Trollope, W. S., van Wilgen, B. W., & Biggs, H. C. (sd). Practical ways of incorporating variation in fire intensity into fire management of African savannas. 1-6. |
[30] | Gutiérrez-Puebla, J., Garcia-Palomares, J. C., & Daniel-Cardozo, O. (2012). Regresión Geográficamente Ponderada (GWR) y estimación de la demanda de las estaciones del Metro de Madrid. XV Congresso Nacional de Tecnologías de la Información Geográfica (pp. 1-12). Madrid: AGE-CSIC. |
[31] | Hardesty, J. R., Myers, L., & Fulks, W. (2005). Fire, ecosystems, and people: a preliminary assessment of fire as a global conservation issue. Third International Symposium on Fire Economics, Planning, and Policy: Common Problems and Approaches (pp. 78-87). U.S.A: U.S. Department of Agriculture. |
[32] | Hollingsworth, L. T., Johnson, D., G., S., & S., S. (2015). Fire management assessment of Eastern Province, Zambia. Washington, D.C, USA: USDA Forest Service, International Programs. |
[33] | Knorr, W., Kaminski, T., Arneth, A., & Weber, U. (2014). Impact of human population density on fire frequency at the global scale. Biogeosciences, 1085-1102. |
[34] | Lentile, L. B., Holden, Z. A., Smith, A. M., Falkowski, M. J., Hudak, A. T., Morgan, P., Benson, N. C. (2006). Remote Sensing Techniques to Assess Active Fire Characteristics and Post-fire effects. Lincoln: USDA Forest Service/UNL- Faculty Publications Paper 194. |
[35] | Lu, D., Weng, Q., Moran, E., Li, G., & Hetrick, S. (2010). Remote Sensing Image Classification. Advances in Environmental Remote Sensing, 1-24. |
[36] | MAE. (2005). Perfil do Distrito de Gilé - Província da Zambézia (2005 ed.). (M. d. Estatal, Ed.) Maputo, Moçambique: Ministério da Administração Estatal (MICOA). |
[37] | Magadzire, N. (2013). Reconstruction of Fire Regime using MODIS burned area data: Charara Safari Area, Zimbabwe. Stellenbosch University. |
[38] | Manyangadze, T. (2009). Forest Fire detection for near real-time monitoring using geostationary satellites - Tese de Mestrado. Netherland: International Institute for Geo-information Science and Earth Observation. |
[39] | Melo, J. L. (2010). Caracterização do Regime do Fogo na Guiné-Bissau - Influência Antropogénica. Lisboa, Portugal: Instituto Superior de Agronomia/ Universidade Técnica de Lisboa. |
[40] | Molinario, G., Davies, D. K., Schroeder, W., & Justice, C. O. (2013). Characterizing the Spatio-temporal fire regime in Ethiopia using the MODIS-active fire product: a replicable methodology for country-level fire reporting. African Geographical Review, 1-27. |
[41] | Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G., & Long, D. G. (2001). Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire, 10, 329–342. |
[42] | N'Datchoh, E. T., Konaré, A., Diedhiou, A., Diawara, A., Quansah, E., & Assamoi, P. (2015). Effects of climate variability on savannah fire regimes in West Africa. Earth System Dynamics, 6, 161-174. |
[43] | Neary, D. G., Klopatek, C. C., DeBano, L. F., & Ffolliott, P. F. (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51-71. |
[44] | Odoi, J. O. (2009). Montane Forest Fire Detection and post-fire forest development (a case study in the Majella National Park, Italy)-Tese de Mestrado. Netherland: International Institute for Geo-Information Science and Earth Observation Enschede. |
[45] | Pereira, A. A., Barros, D. A., Junior, F. W., Pereira, J. A., & Reis, A. A. (2013). Análise da Distribuição espacial de áreas queimadas através da função K de Ripley. Piracicaba, Brasil: Scientia Forestalis. |
[46] | Philip, S. (2007). Active Fire Detection Using Remote Sensing Based Polar-Orbiting and Geostationary Observations: An Approach Towards Near Real-Time Fire Monitoring. Netherland: International Institute for Geo-Information Science and Earth Observation. |
[47] | Pradhan, R., Pradhan, M. P., Bhusan, A., Pradhan, R. K., & Ghose, M. K. (2010a). Land-cover Classification and Mapping for Eastern Himalayan State Sikkim. Journal of Computing, 166-170. |
[48] | Russell-Smith, J., & Yates, C. P. (2007). Australian Savanna Fire Regimes: context, scales, patchiness. Fire Ecology Special Issue, 3 (1), 48-63. |
[49] | SPFFBZ. (2002). Relatório da Campanha de Combate às Queimadas Descontroladas na Província da Zambézia. Quelimane: SERVIÇOS PROVÍNCIAIS DE FLORESTAS E FAUNA BRAVIA. |
[50] | Thakur, S., Singh, A., & Suraiya, S. (2012). Comparison of Different Image Classification Techniques for Land Use Land Cover Classification: An Application in Jabalpur District of Central India. International Journal of Remote Sensing and GIS, 1 (1), 26-31. |
[51] | Tiemann, G. R. (2012). Project Report: Eleven Years of MODIS Burned Area - A GIS Analysis for the Territory of the United Republic of Tanzania. Dar Es-Salam, Tanzania: ZEBRI GIS and Consulting. |
[52] | Whelan, R. J. (1995). The Ecology of Fire. United Kingdom: Cambridge University Press/ Cambridge Studies in Ecology. Retrieved August 27, 2015, from https://books.google.co.mz/books?hl=pt-PT&lr=&id=4bFxAwAAQBAJ&oi=fnd&pg=PR9&dq=Whelan+RJ+%281995%29+%27The+ecology+of+fire.%27+%28Cambridge+University+Press:++Cambridge%29&ots=_5HIBzsTSv&sig=f8TTKC6OtVJinnHM9zfJusPik_8&redir_esc=y#v=onepage&q&f=false. |
[53] | Whelan, R. J. (2006). The ecology of fire – Developments since 1995 and outstanding questions. Life In A Fire-Prone Environment: Translating Science Into Practice conference (p. 10). Brisbane: Griffith University. |
[54] | Zolho, R. (2005). Effect of Fire Frequency on the Regeneration of Miombo Woodland in Nhambita, Mozambique - Master Dissertation. Edinburgh: University of Edinburgh. |
[55] | Zolho, R. (2010). Mudanças Climáticas e sa Florestas em Moçambique. (T. Selemane, Ed.) Maputo: Amigos da Floresta/ Centro de Integridade Pública (CIP). |
[56] | MICOA. (2007). Plano de Acção para a Prevenção e Control às Queimadas Descontroladas 2008-2018: Queimadas Descontroladas, soluções para um problema global. Maputo: Ministerio Para a Coordenação da Acção Ambiental (MICOA). |
APA Style
Credêncio Raúl Maúnze, Ivan Abdul Dulá Remane. (2021). Spatial Analysis and Temporal Variability of Biomass Burning Using Satellite Images in Gilé National Reserve from 2004 to 2014. Research & Development, 2(4), 83-96. https://doi.org/10.11648/j.rd.20210204.12
ACS Style
Credêncio Raúl Maúnze; Ivan Abdul Dulá Remane. Spatial Analysis and Temporal Variability of Biomass Burning Using Satellite Images in Gilé National Reserve from 2004 to 2014. Res. Dev. 2021, 2(4), 83-96. doi: 10.11648/j.rd.20210204.12
@article{10.11648/j.rd.20210204.12, author = {Credêncio Raúl Maúnze and Ivan Abdul Dulá Remane}, title = {Spatial Analysis and Temporal Variability of Biomass Burning Using Satellite Images in Gilé National Reserve from 2004 to 2014}, journal = {Research & Development}, volume = {2}, number = {4}, pages = {83-96}, doi = {10.11648/j.rd.20210204.12}, url = {https://doi.org/10.11648/j.rd.20210204.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.rd.20210204.12}, abstract = {The increasing pressure on the forests ecosystem, led by the need for new areas for agricultural activities in developing regions, is the main cause of the rising occurrence of wildfires that causes damage to these ecosystems. In Mozambique, uncontrolled wildfires are one of the environmental problems, and for its damage control, combat and mitigation are needed a greater efficiency in their detection and monitoring, as the lack of information on the location and extent of burnt area affect the estimation of its real impact on the ecosystem. This study was carried out as a result of increasing burnt areas in the Gilé Nacional Reserve (GNR) between 2001 and 2002. This study aimed to analyze spatial and temporal segregation of fires using satellite images, the results show that the maximum frequency of 15 times in 10 years, corresponding to a mean fire return interval of 3.9 years, with an average of 828 annual fires, registered greatly in August and September, resulting on 229.62 km2 of burnt area, a feature average intensity of 25.09 Mega Watts, being justified in 99% by altitude, slope, and aspect of the plot. The equation developed for the intensity of fires in the GNR is Y=52.504430, 0.061136*Forests - 0.002052* Appearance + 0.067099*Slope + ε.}, year = {2021} }
TY - JOUR T1 - Spatial Analysis and Temporal Variability of Biomass Burning Using Satellite Images in Gilé National Reserve from 2004 to 2014 AU - Credêncio Raúl Maúnze AU - Ivan Abdul Dulá Remane Y1 - 2021/11/10 PY - 2021 N1 - https://doi.org/10.11648/j.rd.20210204.12 DO - 10.11648/j.rd.20210204.12 T2 - Research & Development JF - Research & Development JO - Research & Development SP - 83 EP - 96 PB - Science Publishing Group SN - 2994-7057 UR - https://doi.org/10.11648/j.rd.20210204.12 AB - The increasing pressure on the forests ecosystem, led by the need for new areas for agricultural activities in developing regions, is the main cause of the rising occurrence of wildfires that causes damage to these ecosystems. In Mozambique, uncontrolled wildfires are one of the environmental problems, and for its damage control, combat and mitigation are needed a greater efficiency in their detection and monitoring, as the lack of information on the location and extent of burnt area affect the estimation of its real impact on the ecosystem. This study was carried out as a result of increasing burnt areas in the Gilé Nacional Reserve (GNR) between 2001 and 2002. This study aimed to analyze spatial and temporal segregation of fires using satellite images, the results show that the maximum frequency of 15 times in 10 years, corresponding to a mean fire return interval of 3.9 years, with an average of 828 annual fires, registered greatly in August and September, resulting on 229.62 km2 of burnt area, a feature average intensity of 25.09 Mega Watts, being justified in 99% by altitude, slope, and aspect of the plot. The equation developed for the intensity of fires in the GNR is Y=52.504430, 0.061136*Forests - 0.002052* Appearance + 0.067099*Slope + ε. VL - 2 IS - 4 ER -