| Peer-Reviewed

Synthesis, Spectroscopic, Characterization and X-ray Structures of Lanthanide(III) Complexes Derived from 1,5-bis(phenyl(pyridin-2-yl)methylene)carbonohydrazide

Received: 29 December 2021    Accepted: 13 January 2022    Published: 21 January 2022
Views:       Downloads:
Abstract

The use of 1,5-bis (phenyl (pyridin-2-yl) methylene) carbonohydrazide (H2L) in the coordination chemistry of lanthanides (III) yielded complexes in which two ligand molecules are present. The synthesis was carried out using a Ln/H2L ratio of 1/2 to lead mononuclear complexes of [Ln(H2L)2(η2-NO3)3-x](NO3)x (Ln=La (1), Sm (4), Gd (6) and Yb (7)), [Ln(H2L)2(NO3)3] (Ln=Pr(2), Eu(5) and a co-crystal {[Nd(H2L)2(η2-NO3)2(η1-NO3)], [Nd(H2L)2(η2-NO3)(h1-NO3)(H2O)]}.(NO3).2CH3OH} (3). The structures of the complexes (2) and (3)were solved by X-ray crystallography on a single crystal. In the mononuclear complex of PrIII, two neutral ligand molecules act in tridentate fashion. In the co-crystal complex, one of the NdIII atom is coordinated by two ligand molecules acting tridentately in neutral form and three nitrate anions acting in bidentate fashion while the second NdIII atom is coordinated by two ligand molecules acting tridentately in neutral form, one monodentate nitrate anion, one bidentate nitrate anion and one water molecule. The neutrality of the complex is ensured by one free nitrate anion. Two free methanol molecules are present. Complex (2) crystallizes in the triclinic space group P-1 with the following parameters: a=10.128 (2) Å, b=12.2285 (19) Å, c=20.816 (5) Å, α=85.634 (4), β=81.870 (4)°, γ=87.210 (5)°, V=2542.9 (9) Å3, Z=2, R1=0.0640, wR2=0.1377. Complex (3) crystallizes in the monoclinic space group P21/c with the following parameters: a=10.4554 (12) Å, b=44.089 (6) Å, c=23.212 (3) Å, β=90.851 (2)°, V=10699 (2) Å3, Z=4, R1=0.0630, wR2=0.1690. The coordination sphere of the twelve-coordinated PrIII atom is best described as distorted icosahedron. In the co-crystal one of the NdIII atom is eleven-coordinated while the second NdIII atom is ten-coordinated. The environments around the NdIII atoms are respectively best described as distorted pentacapped trigonal prism and a distorted bicapped square antiprism, respectively. Supramolecular structures are consolidated by numerous hydrogen bonds.

Published in Science Journal of Chemistry (Volume 10, Issue 1)
DOI 10.11648/j.sjc.20221001.11
Page(s) 1-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Schiff Base, Co-crystal, Complex, Lanthanide, Mononuclear

References
[1] T. Curtius, K. Heidenreich, Ueber Hydraziund Azocarbonester, Berichte der Deutschen Chemischen Gesellschaft (1894), 27, 773–774.
[2] Y.-Y. Wu, W.-B. Shao, J.-J. Zhu, Z.-Q. Long, L.-W. Liu, P.-Y. Wang, Z. Li, S. Yang, Novel 1,3,4-Oxadiazole-2-carbohydrazides as Prospective Agricultural Antifungal Agents Potentially Targeting Succinate Dehydrogenase, Journal of Agricultural Food Chemistry (2019), 67, 13892–13903.
[3] Y. Liu, H. Song, Y. Huang, J. Li, S. Zhao, Y. Song, P. Yang, Z. Xiao, Y. Liu, Y. Li, H. Shang, Q. Wang, Design, Synthesis, and Antiviral, Fungicidal, and Insecticidal Activities of Tetrahydro-β-carboline-3-carbohydrazide Derivatives, Journal of Agricultural Food Chemistry (2014), 62, 9987–9999.
[4] Z. Huang, Y. Liu, Y. Li, L. Xiong, Z. Cui, H. Song, H. Liu, Q. Zhao, Q. Wang, Synthesis, Crystal Structures, Insecticidal Activities, and Structure−Activity Relationships of Novel N′-tert-Butyl-N′-substituted-benzoyl-N-[di(octa)hydro]benzofuran{(2,3-dihydro)benzo[1,3]([1,4])dioxine}carbohydrazide Derivatives, Journal of Agricultural Food Chemistry (2011), 59, 635–644.
[5] R. Ragno, A. Coluccia, G. La Regina, G. De Martino, F. Piscitelli, A. Lavecchia, E. Novellino, A. Bergamini, C. Ciaprini, A. Sinistro, G. Maga, E. Crespan, M. Artico, R. Silvestri, Design, Molecular Modeling, Synthesis, and Anti-HIV-1 Activity of New Indolyl Aryl Sulfones. Novel Derivatives of the Indole-2-carboxamide, Journal of Medicinal Chemistry (2006), 49, 3172–3184.
[6] V. Palomo, D. I. Perez, C. Roca, C. Anderson, N. Rodríguez-Muela, C. Perez, J. A. Morales-Garcia, J. A. Reyes, N. E. Campillo, A. M. Perez-Castillo, L. L. Rubin, L. Timchenko, C. Gil, A. Martinez, Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases, Journal of Medicinal Chemistry (2017), 60, 4983–5001.
[7] D. N. Heo, M. A. Alioglu, Y. Wu, V. Ozbolat, B. Ayan, M. Dey, Y. Kang, I. T. Ozbolat, 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs, ACS Applied Materials and Interfaces. (2020), 12, 20295–20306.
[8] D. R. Cosper, D. J. Kowalski, Copper-catalyzed autoxidation of carbohydrazide: kinetics and mechanism, Industrial and Engineering Chemistry Research (1990), 29, 1130–1136.
[9] K. Hrušková, E. Potůčková, L. Opálka, T. Hergeselová, P. Hašková, P. Kovaříková, T. Šimůnek, K. Vávrová, Structure–Activity Relationships of Nitro-Substituted Aroylhydrazone Iron Chelators with ntioxidant and Antiproliferative Activities, Chemical Research in Toxicology (2018), 31, 435–446.
[10] M. M. Hanna, New pyrimido[5,4-e]pyrrolo[1,2-c]pyrimidines: Synthesis, 2D-QSAR, anti-inflammatory, analgesic and ulcerogenicity studies, European Journal of Medicinal Chemistry (2012), 55, 12–22.
[11] S. S. Bharadwaj, B. Poojary, S. K. M. Nandish, J. Kengaiah, M. P. Kirana, M. K. Shankar, A. J. Das, A. Kulal, D. Sannaningaiah, Efficient Synthesis and in Silico Studies of the Benzimidazole Hybrid Scaffold with the Quinolinyloxadiazole Skeleton with Potential α-Glucosidase Inhibitory, Anticoagulant, and Antiplatelet Activities for Type-II Diabetes Mellitus Management and Treating Thrombotic Disorders, ACS Omega (2018), 3, 12562–12574.
[12] R. M. Zaki, A. M. Kamal El-Dean, S. M. Radwan, A. S. A. Sayed, Synthesis and Antimicrobial Activity of Novel Piperidinyl Tetrahydrothieno[2,3-c]isoquinolines and Related Heterocycles, ACS Omega (2020), 5, 252–264.
[13] L. Tripathi, R. Singh, J. P. Stables, Design & synthesis of N′-[substituted] pyridine-4-carbohydrazides as potential anticonvulsant agents, European Journal of Medicinal Chemistry (2011), 46, 509–518.
[14] M. Abdel-Aziz, G. E.-D. A. Abuo-Rahma, A. A. Hassan, Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities, European Journal of Medicinal Chemistry (2009), 44, 3480–3487.
[15] L. Zhang, L. Shi, S. M. Soars, J. Kamps, H. Yin, Discovery of Novel Small-Molecule Inhibitors of NF-κB Signaling with Antiinflammatory and Anticancer Properties, Journal of Medicinal Chemistry (2018), 61, 5881–5899.
[16] G. Kumar, V. S. Krishna, D. Sriram, S. M. Jachak, Synthesis of carbohydrazides and carboxamides as anti-tubercular agents, European Journal of Medicinal Chemistry (2018), 156, 871–884.
[17] J. B. Wright, W. E. Dulin, J. H. Markillie, The Antidiabetic Activity of 3,5-Dimethylpyrazoles, Journal of Medicinal Chemistry (1964), 7, 102–105.
[18] D. Das Mukherjee, N. M. Kumar, M. P. Tantak, A. Das, A. Ganguli, S. Datta, D. Kumar, G. Chakrabarti, Development of Novel Bis(indolyl)-hydrazide–Hydrazone Derivatives as Potent Microtubule-Targeting Cytotoxic Agents against A549 Lung Cancer Cells, Biochemistry (2016), 55, 3020–3035.
[19] J. Li, L. Zhang, G.-C. Xu, W.-X. Yu, D.-Z. Jia, A carbohydrazone based tetranuclear Co(II) complex: Self-assembly and magnetic property, Inorganic Chemistry Communications (2014), 45, 40–43.
[20] T. N. Mandal, S. Roy, S. Konar, A. Jana, S. Ray, K. Das, R. Saha, M. S. El Fallah, R. J. Butcher, S. Chatterjee, S. K. Kar, Self assembled tetranuclear Cu4(II), Ni4(II) [2 × 2] square grids and a dicopper(II) complex of heterocycle based polytopic ligands - Magnetic studies, Dalton Transactions 40 (2011), 40, 11866–11875.
[21] M. B. Talawar, A. P. Agrawal, J. S. Chhabra, S. N. Asthana, Studies on lead-free initiators: synthesis, characterization and performance evaluation of transition metal complexes of carbohydrazide, Journal of Hazardous Materials (2004), 113, 57–65.
[22] M. M. Sow, O. Diouf, M. Gaye, A. S. Sall, G. Castro, P. Pérez-Lourido, L. Valencia, A. Caneschi, L. Sorace, Sheets of Tetranuclear Ni(II) [2 × 2] Square Grids Structure with Infinite Orthogonal Two-Dimensional Water–Chlorine Chains, Crystal Growth Design (2013), 13, 4172–4176.
[23] F. B. Tamboura, O. Diouf, A. H. Barry, M. Gaye, A. S. Sall, Dinuclear lanthanide(III) complexes with large-bite Schiff bases derived from 2,6-diformyl-4-chlorophenol and hydrazides: Synthesis, structural characterization and spectroscopic studies, Polyhedron (2012), 43, 97–103.
[24] F. B. Tamboura, M. Diop, M. Gaye, A. S. Sall, A. H. Barry, T. Jouini, X-ray structure and spectroscopic properties of some lanthanides(III) complexes derived from 2,6-diacetylpyridine-bis(benzoylhydrazone), Inorganic Chemistry Communications (2003), 6, 1004–1010.
[25] F. B. Tamboura, P. M. Haba, M. Gaye, A. S. Sall, A. H. Barry, T. Jouini, Structural studies of bis-(2,6-diacetylpyridine-bis-(phenylhydrazone)) and X-ray structure of its Y(III), Pr(III), Sm(III) and Er(III) complex, Polyhedron (2004), 23, 1191–1197.
[26] W. D. Horrocks, D. R. Sudnick, Lanthanide ion luminescence probes of the structure of biological macromolecules, Accounts of Chemical Research (1981), 14, 384–392.
[27] A. de la Escosura-Muñiz, C. Parolo, A. Merkoçi, Immunosensing using nanoparticles, Materials Today 13 (2010), 13, 24–34.
[28] R. Maouche, S. Belaid, B. Benmerad, S. Bouacida, S. Freslon, C. Daiguebonne, Y. Suffren, G. Calvez, K. Bernot, C. Roiland, L. L. Pollès, O. Guillou, Luminescence properties of lanthanide complexes-based molecular alloys, Inorganica Chimica Acta (2020), 501, 119309.
[29] F. Le Natur, G. Calvez, J.-P. Guégan, L. Le Pollès, X. Trivelli, K. Bernot, C. Daiguebonne, C. Neaime, K. Costuas, F. Grasset, O. Guillou, Characterization and Luminescence Properties of Lanthanide-Based Polynuclear Complexes Nanoaggregates, Inorganic Chemistry (2015), 54, 6043–6054.
[30] X.-W. Zhang, H.-P. Lin, J. Li, L. Zhang, B. Wei, X.-Y. Jiang, Z.-L. Zhang, A very simple method of constructing efficient inverted top-emitting organic light-emitting diode based on Ag/Al bilayer reflective cathode, Journal of Luminescence (2012), 132, 1–5.
[31] Y. Q. Sheng, L. L. Xu, J. Liu, D. Zhai, Z. G. Zhang, Improving monochromaticity of upconversion luminescence by codoping Eu3+ ions in Y2O3:Ho3+, Yb3+ nanocrystals, Journal of Luminescence (2010), 130, 338–341.
[32] Y. Hasegawa, Y. Kitagawa, T. Nakanishi, Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes, NPG Asia Materials (2018), 10, 52–70.
[33] M. A. Fernandez, J. C. Barona, D. Polo-Cerón, M. N. Chaur, Photochemical and electrochemical studies on lanthanide complexes of 6-(hydroxymethyl)pyridine- 2-carboxaldehyde[2- methyl-pyrimidine-4,6-diyl] bis-hydrazone, Revista Colombiana Química (2014), 43, 5–11.
[34] M. T. Kaczmarek, M. Zabiszak, M. Nowak, R. Jastrzab, Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity, Coordination Chemistry Reviews (2018), 370, 42–54.
[35] R. Fouad, Synthesis and characterization of lanthanide complexes as potential therapeutic agents, Journal of Coordination Chemistry (2020), 73, 2015–2028.
[36] J.-D. Londoño-Mosquera, A. Aragón-Muriel, D. Polo Cerón, Synthesis, antibacterial activity and DNA interactions of lanthanide(III) complexes of N(4)-substituted thiosemicarbazones, Universal Science (2018), 23, 141–169.
[37] M. N. Gueye, M. Dieng, I. E. Thiam, D. Lo, A. H. Barry, M. Gaye, P. Retailleau, Lanthanide(III) complexes with tridentate Schiff base ligand, antioxidant activity and X-ray crystal structures of the Nd(III) and Sm(III) complexes, South African Journal of Chemistry (2017), 70.
[38] I. Kostova, M. Traykova, V. Rastogi, New lanthanide complexes with antioxidant activity. Journal of Medicinal Chemistry (2008), 4, 371–378.
[39] T. Sun, Y. Gao, Y. Du, L. Zhou, X. Chen, Recent Advances in Developing Lanthanide Metal–Organic Frameworks for Ratiometric Fluorescent Sensing, Frontiers in Chemistry (2021), 8, 624592.
[40] S. Philip, S. Thomas, K. Mohanan, Synthesis, fluorescent studies, antioxidative and α-amylase inhibitory activity evaluation of some lanthanide(III) complexes, Journal of Serbian Chemical Society (2018), 83, 561–574.
[41] H. E. Yelkenci, N. Öztekin, Separation and Sensitive Detection of Lanthanides by Capillary Electrophoresis and Contactless Conductivity Detection, Journal of Chromatographic Science (2017), 55, 465–470.
[42] T. M. Seck, A. Sy, D. Lo, P. A. Gaye, M. L. Sall, O. Diouf, M. Diaw, M. Gaye, Synthesis, Spectroscopic Studies and X-Ray Diffraction of Heptacoordinated Mn(II) and Co(II) Complexes with Ligands Derived from Carbonohydrazide, Open Journal of Inorganic Chemistry (2019), 09, 35–52.
[43] G. M. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination, Acta Crystallographica Section A Foundations Advances (2015), 71, 3–8.
[44] G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallographica Section C Structural Chemistry (2015), 71, 3–8.
[45] L. J. Farrugia, WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography (2012), 45, 849-854.
[46] C.-J. Kuo, R. J. Holmberg, P.-H. Lin, Slight synthetic changes eliciting different topologies: synthesis, structure and magnetic properties of novel dinuclear and nonanuclear dysprosium complexes, Dalton Transactions (2015), 44, 19758–19762.
[47] M. A. E. Shaban, the Chemistry of C-Nucleosides and Their Analogs II: C-Nucleosides of Condensed Heterocyclic Bases, in: A. R. Katritzky (Ed.), Academic Press (1997, 163–337.
[48] W. J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coordination Chemistry Reviews (1971), 7, 81–122.
[49] K. Singh, P. Srivastava, A. K. Patra, Binding interactions with biological targets and DNA photocleavage activity of Pr(III) and Nd(III) complexes of dipyridoquinoxaline, Inorganica Chimica Acta (2016), 451, 73–81.
[50] I. A. Kahwa, F. R. Fronczek, J. Selbin, Partial hydrolysis of homodinuclear macrocyclic complexes of lanthanides with a 2:2 phenolic schiff’s base and the crystal and molecular structure of resulting open mononuclear 3:1 Schiff’s base complexes of praseodymium(III) and neodymium(III), Inorganica Chimica Acta (1988), 148, 273–281.
[51] D. G. Paschalidis, W. T. A. Harrison, Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzohydrazide, C13H11N3O], Acta Crystallographica Section E Crystallographic. Communications (2016), 72, 191–195.
[52] M. Faye, P. A. Gaye, M. M. Sow, M. Dieng, F. B. Tamboura, N. Gruber, M. Gaye, Synthesis, Characterization and Single Crystal X–ray Crystallography of Nd(III) and Pr(III) Complexes with the Tridentate Schiff Base Ligand N’–(1–(pyridin–2–yl)ethylidene)nicotinohydrazide, Earthline Journal of Chemical Sciences (2021) 99–117.
[53] E. A. Mainicheva, A. A. Tripolskaya, O. A. Gerasko, D. Yu. Naumov, V. P. Fedin, Synthesis and crystal structures of PrIII and NdIII complexes with the macrocyclic cavitand cucurbituril, Russian Chemical Bulletin (2006), 55, 1566–1573.
Cite This Article
  • APA Style

    Amadou Gueye, Papa Samba Camara, Mbossé Ndiaye-Gueye, Sofia Zazouli, Farba Bouyagui Tamboura, et al. (2022). Synthesis, Spectroscopic, Characterization and X-ray Structures of Lanthanide(III) Complexes Derived from 1,5-bis(phenyl(pyridin-2-yl)methylene)carbonohydrazide. Science Journal of Chemistry, 10(1), 1-12. https://doi.org/10.11648/j.sjc.20221001.11

    Copy | Download

    ACS Style

    Amadou Gueye; Papa Samba Camara; Mbossé Ndiaye-Gueye; Sofia Zazouli; Farba Bouyagui Tamboura, et al. Synthesis, Spectroscopic, Characterization and X-ray Structures of Lanthanide(III) Complexes Derived from 1,5-bis(phenyl(pyridin-2-yl)methylene)carbonohydrazide. Sci. J. Chem. 2022, 10(1), 1-12. doi: 10.11648/j.sjc.20221001.11

    Copy | Download

    AMA Style

    Amadou Gueye, Papa Samba Camara, Mbossé Ndiaye-Gueye, Sofia Zazouli, Farba Bouyagui Tamboura, et al. Synthesis, Spectroscopic, Characterization and X-ray Structures of Lanthanide(III) Complexes Derived from 1,5-bis(phenyl(pyridin-2-yl)methylene)carbonohydrazide. Sci J Chem. 2022;10(1):1-12. doi: 10.11648/j.sjc.20221001.11

    Copy | Download

  • @article{10.11648/j.sjc.20221001.11,
      author = {Amadou Gueye and Papa Samba Camara and Mbossé Ndiaye-Gueye and Sofia Zazouli and Farba Bouyagui Tamboura and Ousmane Diouf and Nathalie Gruber and Mohamed Lamine Gaye},
      title = {Synthesis, Spectroscopic, Characterization and X-ray Structures of Lanthanide(III) Complexes Derived from 1,5-bis(phenyl(pyridin-2-yl)methylene)carbonohydrazide},
      journal = {Science Journal of Chemistry},
      volume = {10},
      number = {1},
      pages = {1-12},
      doi = {10.11648/j.sjc.20221001.11},
      url = {https://doi.org/10.11648/j.sjc.20221001.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20221001.11},
      abstract = {The use of 1,5-bis (phenyl (pyridin-2-yl) methylene) carbonohydrazide (H2L) in the coordination chemistry of lanthanides (III) yielded complexes in which two ligand molecules are present. The synthesis was carried out using a Ln/H2L ratio of 1/2 to lead mononuclear complexes of [Ln(H2L)2(η2-NO3)3-x](NO3)x (Ln=La (1), Sm (4), Gd (6) and Yb (7)), [Ln(H2L)2(NO3)3] (Ln=Pr(2), Eu(5) and a co-crystal {[Nd(H2L)2(η2-NO3)2(η1-NO3)], [Nd(H2L)2(η2-NO3)(h1-NO3)(H2O)]}.(NO3).2CH3OH} (3). The structures of the complexes (2) and (3)were solved by X-ray crystallography on a single crystal. In the mononuclear complex of PrIII, two neutral ligand molecules act in tridentate fashion. In the co-crystal complex, one of the NdIII atom is coordinated by two ligand molecules acting tridentately in neutral form and three nitrate anions acting in bidentate fashion while the second NdIII atom is coordinated by two ligand molecules acting tridentately in neutral form, one monodentate nitrate anion, one bidentate nitrate anion and one water molecule. The neutrality of the complex is ensured by one free nitrate anion. Two free methanol molecules are present. Complex (2) crystallizes in the triclinic space group P-1 with the following parameters: a=10.128 (2) Å, b=12.2285 (19) Å, c=20.816 (5) Å, α=85.634 (4), β=81.870 (4)°, γ=87.210 (5)°, V=2542.9 (9) Å3, Z=2, R1=0.0640, wR2=0.1377. Complex (3) crystallizes in the monoclinic space group P21/c with the following parameters: a=10.4554 (12) Å, b=44.089 (6) Å, c=23.212 (3) Å, β=90.851 (2)°, V=10699 (2) Å3, Z=4, R1=0.0630, wR2=0.1690. The coordination sphere of the twelve-coordinated PrIII atom is best described as distorted icosahedron. In the co-crystal one of the NdIII atom is eleven-coordinated while the second NdIII atom is ten-coordinated. The environments around the NdIII atoms are respectively best described as distorted pentacapped trigonal prism and a distorted bicapped square antiprism, respectively. Supramolecular structures are consolidated by numerous hydrogen bonds.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis, Spectroscopic, Characterization and X-ray Structures of Lanthanide(III) Complexes Derived from 1,5-bis(phenyl(pyridin-2-yl)methylene)carbonohydrazide
    AU  - Amadou Gueye
    AU  - Papa Samba Camara
    AU  - Mbossé Ndiaye-Gueye
    AU  - Sofia Zazouli
    AU  - Farba Bouyagui Tamboura
    AU  - Ousmane Diouf
    AU  - Nathalie Gruber
    AU  - Mohamed Lamine Gaye
    Y1  - 2022/01/21
    PY  - 2022
    N1  - https://doi.org/10.11648/j.sjc.20221001.11
    DO  - 10.11648/j.sjc.20221001.11
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 1
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20221001.11
    AB  - The use of 1,5-bis (phenyl (pyridin-2-yl) methylene) carbonohydrazide (H2L) in the coordination chemistry of lanthanides (III) yielded complexes in which two ligand molecules are present. The synthesis was carried out using a Ln/H2L ratio of 1/2 to lead mononuclear complexes of [Ln(H2L)2(η2-NO3)3-x](NO3)x (Ln=La (1), Sm (4), Gd (6) and Yb (7)), [Ln(H2L)2(NO3)3] (Ln=Pr(2), Eu(5) and a co-crystal {[Nd(H2L)2(η2-NO3)2(η1-NO3)], [Nd(H2L)2(η2-NO3)(h1-NO3)(H2O)]}.(NO3).2CH3OH} (3). The structures of the complexes (2) and (3)were solved by X-ray crystallography on a single crystal. In the mononuclear complex of PrIII, two neutral ligand molecules act in tridentate fashion. In the co-crystal complex, one of the NdIII atom is coordinated by two ligand molecules acting tridentately in neutral form and three nitrate anions acting in bidentate fashion while the second NdIII atom is coordinated by two ligand molecules acting tridentately in neutral form, one monodentate nitrate anion, one bidentate nitrate anion and one water molecule. The neutrality of the complex is ensured by one free nitrate anion. Two free methanol molecules are present. Complex (2) crystallizes in the triclinic space group P-1 with the following parameters: a=10.128 (2) Å, b=12.2285 (19) Å, c=20.816 (5) Å, α=85.634 (4), β=81.870 (4)°, γ=87.210 (5)°, V=2542.9 (9) Å3, Z=2, R1=0.0640, wR2=0.1377. Complex (3) crystallizes in the monoclinic space group P21/c with the following parameters: a=10.4554 (12) Å, b=44.089 (6) Å, c=23.212 (3) Å, β=90.851 (2)°, V=10699 (2) Å3, Z=4, R1=0.0630, wR2=0.1690. The coordination sphere of the twelve-coordinated PrIII atom is best described as distorted icosahedron. In the co-crystal one of the NdIII atom is eleven-coordinated while the second NdIII atom is ten-coordinated. The environments around the NdIII atoms are respectively best described as distorted pentacapped trigonal prism and a distorted bicapped square antiprism, respectively. Supramolecular structures are consolidated by numerous hydrogen bonds.
    VL  - 10
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, University Cheikh Anta DIOP, Dakar, Senegal

  • Department of Chemistry, University Alioune DIOP, Bambey, Senegal

  • Department of Chemistry, University Cheikh Anta DIOP, Dakar, Senegal

  • Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco

  • Department of Chemistry, University Alioune DIOP, Bambey, Senegal

  • Department of Chemistry, University Cheikh Anta DIOP, Dakar, Senegal

  • Laboratoire de Tectonique Moléculaire du Solide (UMR 7140), 4 Rue Blaise Pascal, Strasbourg, France

  • Department of Chemistry, University Cheikh Anta DIOP, Dakar, Senegal

  • Sections