| Peer-Reviewed

Synthesis and Characterization of a Coordination Polymer Ce(HL)(NO3)2(H2O) with H2L = N'-[(2-hydroxyphenyl) Methylidene] pyridine-3-Carbohydrazide

Received: 7 September 2022    Accepted: 20 September 2022    Published: 11 October 2022
Views:       Downloads:
Abstract

Herein we reported the crystal structure of a new coordination polymer formulated as Ce(NO3)2(HL)·H2O obtained by the reaction of N'-[(2-hydroxyphenyl)methylidene]pyridine-3-carbohydrazide (H2L) and Cerium nitrate hexahydrate in 1:1 ratio in methanol. The ligand and the coordination polymer were firstly characterized by FTIR and physical measurement. Suitable crystals were grown by slow evaporation of methanol solution of the coordination polymer. The title compound crystallizes in the orthorhombic space group P212121 with the following unit cell parameters: a = 7.8497(1) Å, b = 9.8380(1) Å, c = 22.3471(3) Å, V = 1725.76(4) Å3, Z = 5, R1 = 0.019 and wR2 = 0.036. For each Ce3+ ion the ligand acts in its monodeprotonated form, in tridentate fashion through one phenolate oxygen atom, one azomethine nitrogen atom and one oxygen atom of a carbonohydrazide moiety. One pyridine nitrogen atom of the ligand remains uncoordinated. Two nitrate anions act in η1:η2:μ– mode, one nitrate anion acts in bidentate fashion to each Ce3+ while one water molecule complete the coordination around Ce3+. The structure, solved by single crystal X–ray diffraction, is a polymer in which the units Ce(NO3)2(HL)·H2O are bridged together by two nitrate anions acting in η1:η2:μ– mode. Thus, the cerium cations are ten coordinated and the environments are best described as a distorted bicapped square antiprism. The CeIII···CeIII distance is 5.2824(4) Å and the bridging angle Ce—O—Ce is 161.7(1)°. The structure is consolidated by intra and intermolecular hydrogen bond.

Published in Science Journal of Chemistry (Volume 10, Issue 5)
DOI 10.11648/j.sjc.20221005.14
Page(s) 161-169
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Cerium, Schiff Base, Coordination Polymer, X-Rays, Bicapped Square Antiprism

References
[1] Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Preparation, characterization, and the crystal and molecular structure of two salts containing the eight-coordinate tetrakis (N,N-dimethyldithiocarbamato)tantalum (V) cation, Inorganic Chemistry, 15 (9), 2226-2230. https://doi.org/10.1021/ic50163a045
[2] Anastasiadis, N. C., Mylonas-Margaritis, I. V., Raptopoulou, C. P., Kalofolias, D. A., Milios, C. J., Klouras, N. & Perlepes, S. P. (2015). Dinuclear Lanthanide (III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies, Inorganic Chemistry Communications, 51, 99-102. https://doi:10.3390/molecules26061622
[3] Benmerad, B., Aliouane, K., Rahahlia, N., Guehria-Laïdoudi, A., Dahaoui, S. & Lecomte, C. (2013). Studies of two lanthanide coordination polymers built up from dinuclear units, Journal of Rare Earths, 31 (1), 85-93. https://doi.org/10.1016/S1002-0721(12)60240-3
[4] Kaczmarek, M. T., Jastrząb, R., Kubicki, M., Gierszewski, M. & Sikorski, M. (2015). Supramolecular polymer of Schiff base gadolinium complex: Synthesis, crystal structure and spectroscopic properties, Inorganica Chimica Acta, 430, 108-113. https://doi.org/10.1016/j.ica.2015.02.026
[5] Nakamoto, K., “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, 3rd edition, Wiley–Interscience, New York, (1978).
[6] Chandra, S., Tyagi, Rani, M., S. & Kumar, S. (2010). Lanthanide complexes derived from hexadentate macrocyclic ligand: Synthesis, spectroscopic and thermal investigation, Spectrochimica Acta, Part A, 75 (2), 835-840. https://doi.org/10.1016/j.saa.2009.12.009
[7] Gschdneidner Jr., K. A., The Rare Earths in Modern Science and Technology. In: McCarthy, G. J., Rhine, J. J. and Silber, H. B., Eds., Plenum, New York, (1980), 2, 13-23.
[8] Gueye, M. N., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M., & Retailleau, P. (2017). Lanthanide (III) Complexes with Tridentate Schiff Base Ligand, Antioxidant Activity and X-Ray Crystal Structures of the Nd (III) and Sm (III) Complexes, South African Journal of Chemistry, 70, 8-15. http://dx.doi.org/10.17159/0379-4350/2017/v70a2
[9] Gueye, M. N., Dieng, M., Lo, D., Thiam, I. Barry, E., Gaye, A. H., M., Sall, A. S. & Retailleau, P. (2017). Synthesis, physical studies and crystal structure determination of Y(III) and Er(III) complexes of 1-(pyridin-2-yl)-2-(pyridine-2-ylmethylene)hydrazine, European Journal of Chemistry, 8 (2), 137-143. https://doi.org/10.5155/eurjchem.8.2.137-143.1557
[10] Majumdar, D., Biswas, J. K., Mondal, M., Babu, M. S. S., Metre, R. K., Das, S., Bankura, K., & Mishra, D. (2018). Coordination of N,O-donor appended Schiff base ligand (H2L1) towards Zinc (II) in presence of pseudohalides: Syntheses, crystal structures, photoluminescence, antimicrobial activities and Hirshfeld surfaces, Journal of Molecular Structure, 1155, 745-757. https://doi.org/10.1016/j.molstruc.2017.11.052
[11] Sun, H., Wu, L., Yuan, W., Zhao, J. & Liu, Y. (2016). Phenoxo-O bridged dinuclear lanthanide complexes based on a multitooth Schiff base ligand: structures, fluorescence properties and single-molecule magnet behavior. Inorganic Chemistry Communications, 70, 164-167. https://doi.org/10.1016/j.inoche.2016.06.008
[12] Costes, J.-P., Novitchi, G. & Lebrun, C. (2004). Synthesis, and characterization of new heterodinuclear (4f, 4f’) lanthanide complexes, Journal of Alloys Compounds, 374 (1, 2), 377-381. https://doi.org/10.1016/j.jallcom.2003.11.025
[13] Deun, R. V. & Binnemans, K. (2001). Lanthanide containing Schiff's base complexes with chloride counter-ions: mesomorphic properties, Materials Science and Engineering: C, 18 (1, 2), 211-215. https://doi.org/10.1016/S0928-4931(01)00360-5
[14] Vashistha, N., Chandra, A. & Singh, M. (2018). Influence of rhodamine B on interaction behaviour of lanthanide nitrates with 1st tier dendrimer in aqueous DMSO: A physicochemical, critical aggregation concentration and antioxidant activity study, Journal of Molecular Liquids, 260, 323-341. https://doi.org/10.1016/j.molliq.2018.03.056
[15] Mewis, R. E. & Archibald, S. J. (2010). Biomedical applications of macrocyclic ligand complexes, Coordination Chemistry Reviews, 254 (15, 16), 1686-1712. https://doi.org/10.1016/j.ccr.2010.02.025
[16] Babailov, S. P., Dubovskii P. V. & Zapolotsky, E. N. (2014). Paramagnetic lanthanides as magnetic resonance thermo-sensors and probes of molecular dynamics: Holmium-DOTA complex, Polyhedron, 79, 277-283. https://doi.org/10.1016/j.poly.2014.04.067
[17] Wang, X., Chang, H., Xie, J., Zhao, B., Liu, B., Xu, S., Pei, W., Ren, N., Huang, L. & Huang, W. (2014). Recent developments in lanthanide-based luminescent probes, Coordination Chemistry Reviews, 273–274, 201–212. https://doi.org/10.1016/j.ccr.2014.02.001
[18] Bünzli, J.-C. G. (2016). Lanthanide light for biology and medical diagnosis, Journal of Luminescence, 170, 866-878. https://doi.org/10.1016/j.jlumin.2015.07.033
[19] Zhang, Y., Wei, W., Das, G. K. & Tan, T. T. Y. (2014). Engineering lanthanide-based materials for nanomedicine, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 71-96. https://doi.org/10.1016/j.jphotochemrev.2014.06.001
[20] Vigato, P. A. & Tamburini, S. (2004). The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 248 (17-20), 1717-2128. https://doi.org/10.1016/j.cct.2003.09.003
[21] Casellato, U., Tamburini, S., Tomasin, P. & Vigato, P. A. (2004). Cyclic and acyclic compartmental Schiff bases, their reduced analogues and related mononuclear and heterodinuclear complexes. Inorganic Chimica Acta, 357 (14), 4191-4207. https://doi.org/10.1016/j.ica.2004.06.007
[22] Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Structure, and properties of a dimeric hydroxo-bridged ytterbium (III) complex, di-.mu.-hydroxo-bis[triaquo(pyridine-2-carboxaldehyde-2'-pyridylhydrazone)ytterbium(III)] tetrachloride tetrahydrate, Inorganic Chemistry, 15 (9), 2226-2228. https://doi.org/10.1021/ic50163a046
[23] Taha, Z. A. & Hijazi, A. K. (2021). Structural and photophysical properties of lanthanide complexes with N’-(2-methoxybenzylidene)-2-pyridinecarbohydrazide Schiff base ligand: Catalyzed oxidation of anilines with hydrogen peroxide, Journal of Molecular Structure 1238, 130451. https://doi.org/10.1016/j.molstruc.2021.130451
[24] Pramanik, H. A. R., Chanda, C., Paul, P. C., Bhattacharjee, C. R., Prasad, S. K. & Rao, D. S. S. (2019). Novel tris-buffer based Schiff base bearing long flexible alkoxy arm and its lanthanide complexes: Mesomorphism and photoluminescence, Journal of Molecular Structure 1180, 472-479. https://doi.org/10.1016/j.molstruc.2018.12.014
[25] Dogaheh, S. G., Soleimannejad, J. & Sanudo, E. C. (2020). Asymmetric Schiff base ligand enables synthesis of fluorescent and near-IR emitting lanthanide compounds, Journal of Molecular Structure 1219, 129060. https://doi.org/10.1016/j.molstruc.2020.129060
[26] Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL, Acta Crystallographica Section C 71, 3-8. https://doi.org/10.1107/S2053229614024218
[27] Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update, Journal of Applied Crystallography 45, 849-854. https://doi.org/10.1107/S0021889812029111
[28] Faye, M., Gaye, P. A., Sow, M. M., Dieng, M., Tamboura, F. B., Gruber, N. & Gaye, M. (2021). Synthesis, Characterization and Single Crystal X–ray Crystallography of Nd(III) and Pr(III) Complexes with the Tridentate Schiff Base Ligand N'–(1–(pyridin–2–yl)ethylidene)nicotinohydrazide, Earthline Journal of Chemical Sciences, 6 (1) 99-117. https://doi.org/10.34198/ejcs.6121.99117
[29] Van Vleck, J. H. & Frank, A. (1929). The effect of second order Zeeman terms on magnetic susceptibilities in the rare earth and iron groups, Physical Reviews 34, 1494-1496. https://doi.org/10.1103/PhysRev.34.1494
[30] Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coordination Chemistry Reviews 7 (1), 81-122. https://doi.org/10.1016/S0010-8545(00)80009-0
[31] Paschalidis, D. G. & Harrison, W. T. A. (2016). Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)] NO3. 2.33H2O [pbhis N'-(pyridin-2-ylmethylidene)benzohydrazide, C13H11N3O], Acta Crystallographica Section E 72, 191-195. https://doi.org/10.1107/S2056989015024962
[32] Dieng, M., Thiam, I., Gaye, M., Sall, A. S. & Barry, A. H. (2006). Synthesis, Crystal Structures and Spectroscopic Properties of a Trinuclear [Cu3(HL)2(NO3)2](H2O)(CH2CH2OH) Complex and a [Mn(HL)(CH3COO)]n Polymer With H3L= N,N’-(2-hydroxypropane-1,3-diyl)-bis-(salicylaldimine), Acta Chimica Slovenica, 53, 417-423. http://acta-arhiv.chem-soc.si/53/53-4-417.pdf
[33] Dieng, M., Diouf, O., Gaye, M., Sall, A. S., P-Lourido, P., Valencia, L., Caneschi, A. & Sorace, L. (2013). Polynuclear nickel (II) complexes with salicylaldimine derivative ligands, Inorganica Chimica Acta 394, 741-746. http://dx.doi.org/10.1016/j.ica.2012.09.037
Cite This Article
  • APA Style

    Moussa Faye, Antoine Blaise Kama, Mbosse Ndiaye Gueye, Moussa Dieng, Farba Bouyagui Tamboura, et al. (2022). Synthesis and Characterization of a Coordination Polymer Ce(HL)(NO3)2(H2O) with H2L = N'-[(2-hydroxyphenyl) Methylidene] pyridine-3-Carbohydrazide. Science Journal of Chemistry, 10(5), 161-169. https://doi.org/10.11648/j.sjc.20221005.14

    Copy | Download

    ACS Style

    Moussa Faye; Antoine Blaise Kama; Mbosse Ndiaye Gueye; Moussa Dieng; Farba Bouyagui Tamboura, et al. Synthesis and Characterization of a Coordination Polymer Ce(HL)(NO3)2(H2O) with H2L = N'-[(2-hydroxyphenyl) Methylidene] pyridine-3-Carbohydrazide. Sci. J. Chem. 2022, 10(5), 161-169. doi: 10.11648/j.sjc.20221005.14

    Copy | Download

    AMA Style

    Moussa Faye, Antoine Blaise Kama, Mbosse Ndiaye Gueye, Moussa Dieng, Farba Bouyagui Tamboura, et al. Synthesis and Characterization of a Coordination Polymer Ce(HL)(NO3)2(H2O) with H2L = N'-[(2-hydroxyphenyl) Methylidene] pyridine-3-Carbohydrazide. Sci J Chem. 2022;10(5):161-169. doi: 10.11648/j.sjc.20221005.14

    Copy | Download

  • @article{10.11648/j.sjc.20221005.14,
      author = {Moussa Faye and Antoine Blaise Kama and Mbosse Ndiaye Gueye and Moussa Dieng and Farba Bouyagui Tamboura and Romain Gautier and Mohamed Gaye},
      title = {Synthesis and Characterization of a Coordination Polymer Ce(HL)(NO3)2(H2O) with H2L = N'-[(2-hydroxyphenyl) Methylidene] pyridine-3-Carbohydrazide},
      journal = {Science Journal of Chemistry},
      volume = {10},
      number = {5},
      pages = {161-169},
      doi = {10.11648/j.sjc.20221005.14},
      url = {https://doi.org/10.11648/j.sjc.20221005.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20221005.14},
      abstract = {Herein we reported the crystal structure of a new coordination polymer formulated as Ce(NO3)2(HL)·H2O obtained by the reaction of N'-[(2-hydroxyphenyl)methylidene]pyridine-3-carbohydrazide (H2L) and Cerium nitrate hexahydrate in 1:1 ratio in methanol. The ligand and the coordination polymer were firstly characterized by FTIR and physical measurement. Suitable crystals were grown by slow evaporation of methanol solution of the coordination polymer. The title compound crystallizes in the orthorhombic space group P212121 with the following unit cell parameters: a = 7.8497(1) Å, b = 9.8380(1) Å, c = 22.3471(3) Å, V = 1725.76(4) Å3, Z = 5, R1 = 0.019 and wR2 = 0.036. For each Ce3+ ion the ligand acts in its monodeprotonated form, in tridentate fashion through one phenolate oxygen atom, one azomethine nitrogen atom and one oxygen atom of a carbonohydrazide moiety. One pyridine nitrogen atom of the ligand remains uncoordinated. Two nitrate anions act in η1:η2:μ– mode, one nitrate anion acts in bidentate fashion to each Ce3+ while one water molecule complete the coordination around Ce3+. The structure, solved by single crystal X–ray diffraction, is a polymer in which the units Ce(NO3)2(HL)·H2O are bridged together by two nitrate anions acting in η1:η2:μ– mode. Thus, the cerium cations are ten coordinated and the environments are best described as a distorted bicapped square antiprism. The CeIII···CeIII distance is 5.2824(4) Å and the bridging angle Ce—O—Ce is 161.7(1)°. The structure is consolidated by intra and intermolecular hydrogen bond.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis and Characterization of a Coordination Polymer Ce(HL)(NO3)2(H2O) with H2L = N'-[(2-hydroxyphenyl) Methylidene] pyridine-3-Carbohydrazide
    AU  - Moussa Faye
    AU  - Antoine Blaise Kama
    AU  - Mbosse Ndiaye Gueye
    AU  - Moussa Dieng
    AU  - Farba Bouyagui Tamboura
    AU  - Romain Gautier
    AU  - Mohamed Gaye
    Y1  - 2022/10/11
    PY  - 2022
    N1  - https://doi.org/10.11648/j.sjc.20221005.14
    DO  - 10.11648/j.sjc.20221005.14
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 161
    EP  - 169
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20221005.14
    AB  - Herein we reported the crystal structure of a new coordination polymer formulated as Ce(NO3)2(HL)·H2O obtained by the reaction of N'-[(2-hydroxyphenyl)methylidene]pyridine-3-carbohydrazide (H2L) and Cerium nitrate hexahydrate in 1:1 ratio in methanol. The ligand and the coordination polymer were firstly characterized by FTIR and physical measurement. Suitable crystals were grown by slow evaporation of methanol solution of the coordination polymer. The title compound crystallizes in the orthorhombic space group P212121 with the following unit cell parameters: a = 7.8497(1) Å, b = 9.8380(1) Å, c = 22.3471(3) Å, V = 1725.76(4) Å3, Z = 5, R1 = 0.019 and wR2 = 0.036. For each Ce3+ ion the ligand acts in its monodeprotonated form, in tridentate fashion through one phenolate oxygen atom, one azomethine nitrogen atom and one oxygen atom of a carbonohydrazide moiety. One pyridine nitrogen atom of the ligand remains uncoordinated. Two nitrate anions act in η1:η2:μ– mode, one nitrate anion acts in bidentate fashion to each Ce3+ while one water molecule complete the coordination around Ce3+. The structure, solved by single crystal X–ray diffraction, is a polymer in which the units Ce(NO3)2(HL)·H2O are bridged together by two nitrate anions acting in η1:η2:μ– mode. Thus, the cerium cations are ten coordinated and the environments are best described as a distorted bicapped square antiprism. The CeIII···CeIII distance is 5.2824(4) Å and the bridging angle Ce—O—Ce is 161.7(1)°. The structure is consolidated by intra and intermolecular hydrogen bond.
    VL  - 10
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, University Alioune Diop, Bambey, Senegal

  • Department of Chemistry, University Alioune Diop, Bambey, Senegal

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Senegal

  • Department of Chemistry, University Alioune Diop, Bambey, Senegal

  • Department of Chemistry, University Alioune Diop, Bambey, Senegal

  • Institute of Materials Jean Rouxel, University of Nantes, Nantes, France

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Senegal

  • Sections