| Peer-Reviewed

Concerted [2+2] Oxidative-Cycloadition-Cycloreversion versus Cyclopropanation Reactions at M-carbene Center

Received: 20 May 2023    Accepted: 13 June 2023    Published: 27 June 2023
Views:       Downloads:
Abstract

The selectivity of olefin metathesis catalyzed by metal-alkylidene LnM=CHR, a reversible sequence of concerted [2+2] oxidative-cycloadition-cycloreversion at metal center, which fits to π–CAM (Complex Assisted Metathesis) principle or π-bond mode, in other words a transalkylidenation reaction through a metallacyclobutane intermediate, as well as the cyclopropanation reactions depends mostly on the structure of the catalysts. Cyclopropane affords as side product in the presence of the Schrock or Grubbs metal carbene complex which alternatively decomposed through β-hydride transfer, or as the major product in the presence of the Fischer carbene complex. The cyclopropnanation mechanisms are concerted or stepwise. The insertion of the transition-metal atom into a C-C bond of cyclopropane is predicted to form MCH2 + C2H4, through a formal retrocarbene addition, a reverse reaction cyclopropane – metallacyclobutane. Five resonance structures are representative for the metal-carbon bond of alkylidene complexes: 1. ethylene, corresponding to the singlet coupling of a neutral species, 2. π ylide, corresponding to a covalent M-C σ bond and a dative carbon to metal π-back bond, 3. as a dative carbon to metal σ-bond coupled with a dative to carbon π-back bond, corresponding to the singlet-carbene model of bonding, 4. as a four-electron donor corresponding to coordination of the CH22- ligand to a LnMq+2 fragment in a ionic fashion, and 5. σ ylide, corresponding to a dative M-C σ bond coupled with a covalent M-C π bond. The reactivity of the M-carbene depends on the predominance of one resonance structure over the other, therefore the nucleophilic resonance (LnMq+CH2q-) contribute approximately 50% to the ground-state wave function, the neutral resonance structures (LnM0CH20) 45%, and the electrophilic resonance structures (LnMq-CH2q+) 5%. The bonding situation, derived from the contribution of the electrostatic and the orbital interaction, the strength of the σ donor and π acceptor bonding, was discussed in terms of well-defined quantum chemical methods.

Published in Science Journal of Chemistry (Volume 11, Issue 3)
DOI 10.11648/j.sjc.20231103.14
Page(s) 108-136
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Metathesis Mechanism, Cyclopropanation, Fischer-Carbene, Schrock-Carbene, Grubbs Carbene

References
[1] J. L. Hérisson, Y. Chauvin, Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d’oléfines acycliques [French], Makromol. Chem. 1970, 141, 161.
[2] D. Astruc, The metathesis reactions: from a historical perspective to recent developments, New J. Chem. 2005, 29, 42; doi.org/10.1039/B412198H.
[3] C. I. Mitan, V. Dragutan, I. Dragutan, New insights into the mechanism of alkene metathesis Rev. Roum. Chim. 2011, 56, 299.
[4] N. Calderon, H. Y. Chen, K. W. Scott, Olefin metatesis – A novel reaction for skeletal transformations of unsaturated hydrocarbons, Tetrahedron Lett. 1967, 34, 3327; doi.org/10.1016/S0040-4039 (01)89881-6.
[5] P. G. Gassman, R. Yamaguchi, Electron transfer from highly strained polycyclic molecules, Tetrahedron 1982, 38, 1113; doi.org/10.1016/0040-4020 (82)80129-4.
[6] P. G. Gassman, T. Nakai, Chemistry of bent bonds. XXVIII. Transition metal complex specificity and substituent effects in the transition metal complex promoted rearrangement of phenyl substituted bicyclo [1.1.0] butanes, J. Am. Chem. Soc. 1972, 94, 2877; doi.org/10.1021/ja00763a066.
[7] P. Gassman, T. H. Johnson, The chemistry of bent bonds. 51. The relation of polarization in metal-carbene complexes to the degenerate metathesis of terminal olefins, J. Am. Chem. Soc. 1977, 99, 622; doi.org/10.1021/ja00444a058.
[8] R. Z. Hinrichs, J. J. Schroden, F. H. Davis, Competition between C-C and C-H insertion in prototype transition metal-hydrocarbon reactions, J. Am. Chem. Soc. 2003, 125, 860; doi.org/10.1021/ja0278842.
[9] S. Díez-González, S. P. Nolan, Stereochemic parameters associated with N-heterocyclic carbene NHC ligands: A quest for understanding, Coord. Chem. Rev. 2007, 251, 874; doi: 10.1016/j.ccr.2006.10.004.
[10] R. R. Schrock, A. H. Hoveyda, Molybdenum and tungsten imido alkylidene complexes as efficient olefin metathesis catalysts, Angew. Chem. Int. Ed. 2003, 42, 4592; doi.org/10.1002/anie.200300576.
[11] R. R. Schrock, Multiple metal-carbon bonds for catalytic methatesis, Angew. Chem. Int. Ed. 2006, 45, 3748; doi.org/10.1002/anie.200600085.
[12] M. L. Regains, C. F. Bernasconi, Factors that affect the kinetic and thermodynamic acidities of Fischer carbene complexes: New insights from the study of the cationic (methoxymethyl carbene) dicarbonyl pentamethyl cyclopentadienyl iron ([Cp*(CO)2Fe=C(OMe)Me]+), J. Organomet. Chem. 2005, 690, 5616; doi: 10.1016/j.jorganchem.2005.07.011.
[13] T. E. Taylor, M. B. Hall, Theoretical comparison between nucleophilic and electrophilic transition metal carbenes using generalized molecular orbital and configuration interaction methods, J. Am. Chem. Soc. 1984, 1576; doi.org/10.1021/ja00318a007.
[14] G. Frenkling, M. Solá, S. F. Vyboishchikor, Chemical bonding in transition metal carbene complexes, J. Organomet. Chem. 2005, 690, 6178; doi: 10.1016/j.jorganchem.2005.08.054.
[15] Y-D. Wu, Z-H. Peng, Theoretical studies on alkene addition to molybdenum alkylidenes, J. Am. Chem. Soc. 1997, 119, 8043; doi.org/10.1021/ja970644f.
[16] J. H. Oskam, R. R. Schrock, Rate of interconversion of syn and anti rotamers of Mo(CHCMe2Ph)(NAr)(OR)2 and relative reactivity toward 2, 3-bis(trifluoromethyl)norbornadiene, J. Am. Chem. Soc. 1992, 114, 7588-7590; doi.org/10.1021/ja00045a056.
[17] R. R. Schrock, A. J. Jiang, S. C. Marinescu, J. H. Simpson, P. Müller, Fundamental studies of molybdenum and tungsten methylidene and metallacyclobutane complexes, Organometallics 2010, 29, 5241; doi.org/10.1021/om100363g.
[18] O. Eisenstein, R. Hoffmann, Activation of a coordinated olefin toward nucleophilic attack, J. Am. Chem. Soc. 1980, 102, 6148-6149; doi.org/10.1021/ja00539a032.
[19] O. Eisenstein, R. Hoffmann, Transition metal complexed olefins: haw their reactivity toward a nucleophile relates to their electronic structure, J. Am. Chem. Soc. 1981, 103, 4308; doi.org/10.1021/ja00405a005.
[20] J. S. Yadav, A. Antony, S. T. Rao, B. V. S. Reddy, Recent progress in transition metal catalyzed hydrofunctionalisation of less activated olefins, J. Organomet. Chem. 2011, 696, 16; doi.org/10.1016/j.jorganchem.2010.09.052.
[21] E. V. Anslyn, R. H. Grubbs, Mechanism of titanocene metallacyclobutane cleavage and the nature of the reactive intermediate, J. Am. Chem. Soc. 1987, 4880; doi.org/10.1021/ja002500021.
[22] T. C. T. Chang; B. M. Foxman, M. Rosenblum, C. Stockman, Reactivity of distorted C5H5Fe(CO)2(olefin) cations toward nucleophilic attack, J. Am. Chem. Soc. 1981, 103, 7361; doi.org/10.1021/ja00414a066.
[23] A. K. Keating, S. R. Merrigan, D. A. Singleton, K. N. Houk, Experimental proof of the non-least-motion cycloadditions of dichlorocarbene to alkenes; kinetic isotope effects and quantum mechanical transition states, J. Am. Chem. Soc. 1999, 121, 3933; doi.org/10.1021/ja981427x.
[24] K. Fukui, An M0-theoretical illumination for the principle of stereoselection, Bull. Chem. Soc. Jpn. 1966, 39, 498; doi.org/10.1246/bcsj.39.498.
[25] W. A. Goddard III, Selection rules for chemical reactions using the orbital phase continuity principle, J. Am. Chem. Soc. 1972, 94, 793; doi.org/10.1021/ja00758a019.
[26] W. A. Goddard III, Orbital phase continuity principle and selection rules for concerted reactions, J. Am. Chem. Soc. 1970, 92, 7520; doi.org/10.1021/ja00728a073.
[27] T. H. Upton, A. K. Rappé, A thepretical basis for low barriers in transition metal complex 2.pi. + 2.pi. reactions: the isomerization of the dicyclopentadienyltitanium complex Cp2TiC3H6 to Cp2TiCH2(C2H4), J. Am. Chem. Soc. 1985, 107, 1206; doi.org/10.1021/ja00291a021.
[28] T. H. Upton, Activation of single-bond cleavage processes on metal surfaces: a comparison of dissociative hydrogen adsorption with simple gas-phase exchange reactions, J. Am. Chem. Soc. 1984, 106, 1561; doi.org/10.1021/ja00318a005.
[29] M. L. Steigerwald, W. A. Goddard III, The 2s+2s reactions at transition metals. 1. The reactions of deuterium with dichlorohydrotitanium (1+) ion (Cl2TiH+), titanium hydrogen dichloride (Cl2TiH), and scandium hydrogen dichloride (Cl2SeH), J. Am. Chem. Soc. 1984, 106, 308; doi.org/10.1021/ja00314a009.
[30] H. K. Hall, P. Ykman, Reactions of the switterions from trisubstituted electron deficient ethylenes and electron-rich olefins, J. Am. Chem. Soc. 1975, 97, 800; doi.org/10.1021/ja00837a020.
[31] J. K. Rasmussen, o-Silylated enolates-versatile intermediates for organic synthesis, Synthesis 1977, 91; doi: 10.1055/s-1977-24284.
[32] J. K. Williams, D. W. Wiley, B. C. McKusick, Cyanocarbon Chemistry. XIX. Tetracyanocyclobutanes from tetracyanoethylene and electron-rich alkenes, J. Am. Chem. Soc. 1962, 84, 2210; doi.org/10.1021/ja00870a037.
[33] R. Noyori, I. Umeda, H. Kawauchi, H. Takaya, Nickel-catalyzed reactions involving strained bond. XII. Nickel(0)-catalyzed reaction of quadricyclane with electron-deficient olefins, J. Am. Chem. Soc. 1975, 97, 812; doi.org/10.1021/ja00837a022.
[34] N. Yoshikai, S. C. Ammal, E. Nakamura, L-Shaped three-center two-electron (C-C-C)+ bonding array, J. Am. Chem. Soc. 2004, 126, 12941; doi.org/10.1021/ja6470416.
[35] F. D. Mango, J. H. Schachtschneider, Molecular orbital symmetry conservation in transition metal catalyzed transformations, J. Am. Chem. Soc. 1967, 89, 2484; doi.org/10.1021/ja00986a044.
[36] F. D. Mango, An orbital symmetry description of transition metal catalyzed butadiene cyclobutanation, Tetrahedron Lett. 1969, 54, 4813; doi.org/10.1016/50040-4039 (01)88817-1.
[37] A. Padwa, H. Lipka, S. H. Watterson, S. S. Hurphree, Phenylsulfonyl ene-allenes as efficient precursors to bicyclic system via ntramolecular [2+2] cycloaddition reactions, J. Org. Chem. 2003, 68, 6238; doi.org/10.1021/jo6345796.
[38] K. V. Gothelf, K. A. Jørgensen, Asymmetric 1, 3-dipolar cycloaddition reactions, Chem. Rev. 1998, 98, 863; doi.org/10.1021/cr970324e.
[39] R. Huisgen, G. Steiner, Nonstereospecificity in the [2+2] cycloadditions of tetracyanoethylene to enol ethers, J. Am. Chem. Soc. 1973, 95, 5054; doi.org/10.1021/ja00796a051.
[40] R. Huisgen, G. Steiner, Reversibility of zwitterion formation in the [2+2] cycloaddition of tetracyanoethylene to enol ethers, J. Am. Chem. Soc. 1973, 95, 5055; doi.org/10.1021/ja00796a052.
[41] R. Huisgen, G. Steiner, Tetracyanoethylene and enol ethers. Dependence of cycloaddition rat on solvent polarity, J. Am. Chem. Soc. 1973, 95, 5056; doi.org/10.1021/ja06796a053.
[42] N. D. Epiotis, R. L. Yates, D. Carlberg, F. Bernardi, On the stereochemistry of polar 2+2 cycloadditions, J. Am. Chem. Soc. 1976, 98, 453; doi.org/10.1021/ja00418a022.
[43] K. Fukui, T. Yonezawa, H. Shigu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chim. Phys. 1952, 20, 722; doi.org/10.1063/1.1700523.
[44] J. Ushio, H. Nakatsuji, T. Yonezawa, Electronic structures and reactivities of metal carbon multiple bonds, Schrok-type metal-carbene and metal-carbyne complexes, J. Am. Chem. Soc. 1984, 106, 5892; doi.org/10.1021/ja00332a024.
[45] H. Nakatsuji, J. Ushio, S. Han, T. Yonezawa, Ab initio electronic structures and reactivities of metal carbene complexes, J. Am. Chem. Soc. 1983, 105, 426; doi.org/10.1021/ja00341a022.
[46] R. J. Goddard, R. Hoffmann, E. D. Jemmis, Unusual metal-carbon-hydrogen angles, carbon-hydrogen bond activation, and alpha-hydrogen abstraction in transition-metal carbonecomplexes, J. Am. Chem. Soc. 1980, 102, 7667; doi.org/10.1021/ja00546a008.
[47] A. K. Rappé, T. H. J. Upton, SIGMA. Metathesis reactions involving group 3 and 13 metals Cl2MH+H2 and Cl2MCH3+CH4, M = Al and Se, J. Am. Chem. Soc. 1992, 114, 7507; doi.org/10.1021/ja00045a026.
[48] R. R. Schrock, Multiple metal-carbon bonds. 5. The reaction of niobium and tantalum neopentylidene complexes with the carbonyl function, J. Am. Chem. Soc. 1976, 98, 5399; doi.org/10.1021/ja00433a062.
[49] T. R. Cundari, M. S. Gordon, High-valent transition-metal alkylidene complexes: effect of ligand and substituent modification, J. Am. Chem. Soc. 1992, 114, 539; doi.org/10.1021/ja00028a022.
[50] T. R. Cundari, M. S. Gordon, Principal resonance contributers to high-valent, transition metal alkylidene complexes, J. Am. Chem. Soc. 1991, 113, 5231; doi.org/10.1021/ja00014a015.
[51] R. Noyori, On the mature of carbenoids generated from bicyclo [1.1.0]butanes and transition metal complexes, Tetrahedron Lett. 1973, 1691; doi.org/10.1016/50040-4039 (01)96030-7.
[52] C. N. Baird, K. F. Taylor, Multiplicity of the ground state and magnitude of the T1-S0 gap in substituted carbenes, J. Am. Chem. Soc. 1978, 100, 1333; doi.org/10.1021/ja00473a001.
[53] J. F. Harrison, R. C. Liedtke, J. F. Liebman, The multiplicity of substituted acyclic carbenes and related molecules, J. Am. Chem. Soc. 1979, 101, 7162; doi.org/10.1021/ja00518a006.
[54] P. G. Gassman, T. H. Johnson, Quenching of olefin metathesis, Evidence for the generation of metal-carbene intermediates from noncarbenoid precursors, J. Am. Chem. Soc. 1976, 98, 6055; doi.org/10.1021/ja00435a056.
[55] I. Fernández, M. A. Sierra, M. Gómez-Gallego, M. J. Mancheňo, F. P. Cossío, Computational and experimental studies on the mechanism of the photochemical carbonylation of group 6 Fisher carbene complexes, Chem. Eur. J. 2005, 11, 5988; doi.org/10.1002/chem.200400944.
[56] H. C. Foley, L. M. Strubinger, T. S. Targos, G. L. Geoffroy, Photochemistry of [W(CO)5{C(OMe)Ph}]. Formation of alkyne-carbene complexes and studies of their decomposition reactions, J. Am. Chem. Soc. 1983, 105, 3064; doi.org/10.1021/ja00348a020.
[57] G. Trinquier, J.-P. Malrieu, Nonclassical distortions at multiple bonds, J. Am. Chem. Soc. 1987, 109, 5303; doi.org/10.1021/ja00252a002.
[58] J.-P. Malrieu, G. Trinquier, Trans-bending at double bonds. Occurrence and extent, J. Am. Chen. Soc. 1989, 109, 5916; doi.org/10.1021/ja00197a061.
[59] D. S. Marynick, C. M. Kirkpatrick, Localozed molecular orbital studies on transition-metal complexes. III. Localized valence structures of transition-metal carbenes complexes, J. Am. Chem. Soc. 1985, 107, 1993; doi.org/10.1021/ja00293a032.
[60] M. W. Schmidt, M. S. Gordon, M. Dupuis, The intrinsic reactions coordinate and the rotational barrier in silaethylene, J. Am. Chem. Soc. 1985, 107, 2585; doi.org./10.1021/ja00295a002.
[61] M. W. Schmidt, P. N. Truong, M. S. Gordon, pi-Bond strenghs in the second and third periods, J. Am. Chem. Soc. 1987, 109, 5217; doi.org/10.1021/ja00251a029.
[62] Y. Yamaguchi, Y. Osamura, H. F. Schaefer III, Analytic energy second derivatives for two configuration self-consistent-field wave functions. Application to twisted ethylene and to the trimethylene diradical, J. Am. Chem. Soc. 1983, 105, 7506; doi.org/10.1021/ja00364a004.
[63] G. Occhipinti, V. R. Jensen, Nature of the transition Metal-Carbene bond on Grubbs olefin metathesis catalysis, Organometallics 2011, 30, 3522; dx.doi.org/10.1021/om20018y.
[64] T. J. Katz, J. McGinnis, Mechanism of the olefin metathesis reaction, J. Am. Chem. Soc. 1977, 1903; doi.org/10.1021/ja00839a063.
[65] R. H. Grubbs, P. L. Burk, D. D. Carr, Mechanism of the olefin metathesis reaction, J. Am. Chem. Soc. 1975, 97, 3265; doi.org/10.1021/ja00844a082.
[66] R. H. Grubbs, D. D. Carr, C. Hoppin, P. L. Burk, Consideration of the mechanism of the metal catalyzed olefin metathesis reaction, J. Am. Chem. Soc. 1976, 94, 3478; doi.org/10.1021/ja00428015.
[67] T. J. Katz, J. McGinnis, Metathesis of cyclic and acyclic olefins, J. Am. Chem. Soc. 1977, 1903; doi.org/10.1021/ja00448a036.
[68] T. J. Katz, R. Rothchild, Mechanism of the olefin metathesis of 2, 2’ divinylbiphenyl, J. Am. Chem. Soc. 1976, 98, 2519; doi.org/10.1021/ja00426a021.
[69] C. P. Casey, H. E. Tuinstra, Stereochemistry of the degenerate methatesis of terminal alkenes-the nature of the chain-carring metal-carbene cpmplex, J. Am. Chem. Soc. 1978, 100, 2270; doi.org/10.1021/ja00475a070.
[70] M. T. Mocella, M. A. Busch, E. L. Muetterties, Olefin metathesis reaction. III. Mechanistic considerations, J. Am. Chem. Soc. 1976, 78, 1283; doi.org/10.1021/ja00421a051.
[71] R. R. Schrock, First isolable transition metal methylene complex, and some simple reactions, J. Am. Chem. Soc. 1975, 97, 6577; doi.org/10.1021/ja00855a048.
[72] Hansen, F. Rominger, M. Metz, P. Hofmann, The first Grubbs-type metathesis catalyst with cis stereochemistry: synthesis of [(η2-dtbpm) Cl2Ru=CH-CH=CMe2] from a novel, coordinatively unsaturated dinuclear ruthenium dihydride, Chem. Eur. J. 1999, 5, 557; doi.org/10.1002(SICI)1521-3765(19990201)5:2<557: AID-CHEM557>3.0.Co; 2-A.
[73] S. J. McLain, C. D. Wood, R. R. Schrock, Multiple metal-carbon bonds. 6. The reaction of niobium and tantalium neopentylide complexes with simple olefins: a route to metallocyclopentanes, J. Am. Chem. Soc. 1977, 99, 3519; doi.org/10.1021/ja0045a064.
[74] F. Blanc, C. Copéret, J. Thivolle-Cazat, J. M. Basset, A. Lesage, L. Emsley, A. Sinha, R. R. Schrock, Angew. Chem. Int. Ed. 2006, 45, 1216-1220.
[75] F. C. Courchay, T. W. Baughman, K. B. Wagener, Understanding the effect of allylic methyls in olefin cross-metathesis, J. Organomet. Chem. 2006, 691, 585; doi.org/10.1016/j.jorganchem.2005.09.030.
[76] M. L. Macnaughtan, J. Gary, D. L. Gerlach, M. J. A. Johnson, J. W. Kampf, Cross-metathesis of vinyl halides. Scope and limitation of ruthenium based catalysts, Organometalics 2009, 28, 2880; doi.org/10.1021/om800463n.
[77] G. Occhipinti, H.-R. Bjorsvik, V. R. Jensen, Quantitative structure activity relationships of ruthenium cataluzed for olefin metathesis, J. Am. Chem. Soc. 2006, 128, 6952; doi.org/10.1021/ja060832i.
[78] F. Nuñez, J. Poater, L. Rodríguez-Santiago, X. Solans-Monfort, M. Solà, M. Sodupe, On the electronic structure of second generation Hoveyda-Grubbs alkene metathesis precursors, Comp. Theor. Chem. 2012, 996, 57; doi.org/10.1016/j.compte.2012.07.015.
[79] T. M. Trnka, M. W. Day, R. H. Grubbs, Olefin metathesis with 1, 1-difluoroethylene, Angew. Chem. Int. Ed. 2001, 40, 3441; doi.org/10.1002/1521-3773/20010917)40:18<3491.
[80] S. Fomine, M. A. Tlenkopatcher, Methatesis of fluorinated olefins by ruthenium alkylidene catalysts. Florine substituent effects on a Ru-carbene(alkylidene) complex stability, Appl. Catal. A, 2009, 355, 148; doi.org/10.1016/j.apcata.2008.12.011.
[81] M. Jordaan, P. van Helden, C. G. C. E. van Sittert, H. C. M. Vosloo, Experimental and DFT investigation of the 1-actene metathesis reaction mechanism with the Grubbs 1 precatalyst, J. Mol. Cat. A: Chem. 2006, 145; DOI: 10.1016/J.MOLCATA2006.03.022.
[82] P. Tobón, S. Gómez, A. Restrepo, F. Núñez-Zarur, Role of substrate substituent in alkene metathesis mediated by a Ru alkylidene catalyst, Organomet 2021, 40, 119; doi.org/10.1021/acs.organomet.Oc00482.
[83] A. Caballero, A. Prieto, M. M. Díaz-Requejo, P. J. Pérez, Metal-catalyzed olefin cyclopropanation with ethyl diazoacetate: control of the diastereoselectivity, Eur. J. Inorg. Chem. 2009, 1137; doi.org/10.1002/ejic.200800944.
[84] M. P. Doyle, M. N. Protopopova, New aspects of catalutic asymmetric cyclopropanation, Tetrahedron 1998, 54, 7918; doi.org/10.1016/S0040-4020(98)00222-1.
[85] A. Berkessel, P. Kaiser, J. Lex, Electronically tuned chiral ruthenium porphyrins: extremely stable and selectivecatalysts for asymmetric epoxidation and cyclopropanation, Chem. Eur. J. 2003, 9, 4746; doi.org/10.1002/chem.200305045.
[86] A. Tudose, A. Demonceau, L. Delaude, Imidazol(in) ium-2-carboxylates as N-heterocyclic carbene precursors in ruthenium-arene catalysts for olefin methatesis and cyclopropanation, J. Organomet. Chem. 2006, 691, 5356; doi.org/10.1016/j.jorganchem.2006.07.035.
[87] A.-M. Abu-Elfotoh, K. Phomkeona, K. Shibatoni, S. Iwasa, Asymmetric inter and intramolecular cyclopropnation reactions catalyzed by a reusable macroporus-polymer-supported chiral ruthenium (II) phenyl-oxazolium complex, Angew. Chem. Int. Ed. 2010, 49, 8439; doi.org/10.1002/anie.201002240.
[88] M. M. Díaz-Requejo, T. R. Belderraín, S. Trofimenko, P. J. Pérez, Unprecedented highly cis-diastereoselective olefin cyclopropanation using copper homoscorpionate catalysts, J. Am. Chem. Soc. 2001, 123, 3167; doi.org/10.1021/ja0155736.
[89] T. Ikeno, I. Iwakura, T. Yamada, Cobalt-carbene complex with single-bond character intermediate for the cobalt complex-catalyzed cyclopropanation, J. Am. Chem. Soc. 2002, 124, 15152; doi.org/10.1021/ja027713x.
[90] A. J. Anciaux, A. J. Hubert, A. F. Noels, N. Petiniot, P. Feyssié, Transition metal catalyzed reactions of diazo compounds. 1. Cyclopropanation of double bonds, J. Org. Chem. 1980, 45, 695; doi.org/10.1021/jo0192a029.
[91] A. Nakamura, A. Konishi, R. Tsujitani, M. Kudo, S. Otsuka, Enantioselective carbenoid cyclopropanation catalyzed by chiral vicdioximatocobalt(II) complexes prepared from natural camphor and.beta.-pinene. Mechanism and stereochemistry. J. Am. Chem. Soc. 1978, 100, 3449; doi.org/10.1021/ja00479a029.
[92] M. Nakamura, A. Hirai, E. Nakamura, Reaction pathways of the Simmons-Smith reaction, J. Am. Chem. Soc. 2003, 125, 2341; doi.org/10.1021/ja026709j.
[93] N. Yoshikai, S. C. Ammal, E. Nakamura, L-Shaped three-center two-electron, J. Am. Chem. Soc. 2004, 126, 12941; doi.org/10.1021/ja0470416.
[94] Y.-B. Zho, F.-L. Cao, Mechanistic competition variations due to the substituents in the lithium carbenoid promoted cyclopropanation reactions, J. Organomet. Chem. 2007, 692, 3723; doi.org/10.1016/j.jorganchem.2007.05.014.
[95] J. R. Wolf, C. G. Hamaker, J.-P. Djukic, T. Kodadek, K. L. Woo, Shape and stereoselectivity cyclopropanation of alkenes catalyzed by iron porphyrins, J. Am. Chem. Soc. 1995, 117, 9194; doi.org/10.1021/ja00141a011.
[96] C.-M. Che, J.-S. Huang, F.-W. Lee, Y. Li, T.-S. Lai, H.-L. Kwong, P.-F. Teng, W.-S. Lee, W.-C. Lo, S.-M. Peng, Z.-Y. Zhou, Asymmetric inter and intramolecular cyclopropnation of alkenes catalyzed by chiral ruthenium porphyrins. Synthesis and crystal structure of a chiral metalloporphyrin carbene complex, J. Am. Chem. Soc. 2001, 123, 4119; doi.org/10.1021/ja001416f.
[97] H. Nishiyama, Y. Itoh, H. Matsumoto, S.-B. Park, K. Itoh, New chiral ruthenium bis (oxazolinyl) pyridine catalyst. Efficient asymmetric cyclopropanation of olefin with diazoacetates, J. Am. Chem. Soc. 1994, 116, 2223; doi.org/10.1021/ja00084a104.
[98] D. Griller, A. S. Nazran, J. C. Scaiano, Flosh photolysis studies of carbenes and their impact on the skell-woodworth rules, Tetrahedron 1985, 41, 1525; doi.org/10.1016/S0040-4020(01)96392-6.
[99] A. P. Marchand, N. M. Brockway, Carbalkoxy carbenes, Chem. Rev. 1974, 74, 431; doi.org/10.1021/cr60290a002.
[100] R. Noyori, M. Yamakawa, A molecular orbital study of carbomethoxycarbene and dicarboxycarbene, Tetrahedron Lett. 1980, 21, 2851; doi.org/10.1016/S0040-4039(00)78625-4.
[101] R. J. Miller, H. Shechter, Electronic effects in the unimolecular decomposition of substituted diphenyldiazomethanes, J. Am. Chem. Soc. 1978, 100, 7920; doi.org/10.1021/ja00493a022.
[102] D. E. James, L. F. Hines, J. K. Stille, The palladium(II) catalyzed olefin carbonylation reaction. The stereochemistry of methoxypalladation. J. Am. Chem. Soc. 1976, 98, 1806; doi.org/10.1021/ja00423a027.
[103] R. M. Moriarty, S. Tyagi, M. Kinck, Metal free intramolecular cyclopropanation of alkenes through iodonium ylide methodology, Tetrahedron 2010, 66, 5801; doi.org/10.1016/j.tet2010.05.005.
[104] C. E. Kefalidis, A. A. Kanakis, J. K. Gallos, C. A. Tsipis, DFT study of the mechanism of Cu(I)-catalyzed and uncatalyzed intramolecular cyclopropnation of iodonium ylides, J. Organomet. Chem. 2010, 695, 2030; doi.org/10.1016/j.jorganchem.2010.05.013.
[105] C. R. Johnson, M. Haake, C. W. Schrock, Chemistry of sulfoxides and related compounds. XXVI. Preparation and synthetic applications of (dimethylamino) phenyloxosulfonium methylide, J. Am. Chem. Soc. 1970, 92, 6594; doi.org/10.1021/ja00725a035.
[106] R.. Noyori, H. Kawauchi, H. Takaya, Stereochemistry of the nickel(0) catalyzed reaction of bicyclo [1.1.0]butane and electron-deficient olepins, Tetrahedron Lett. 1974, 19, 1749; doi.org/10.1016/S0040-4039 (01)82570-3.
[107] C. P. Casey, N. L. Hornung, W. P. Kosar, Intramolecular cyclopropanation and olefin metathesis reactions of (CO)5W: C(OCH2CH2CH: CHOCH3)C6H4CH3-p, J. Am. Chem. Soc. 1987, 109, 4908; doi.org/10.1021/ja00250a025.
[108] C. P. Casey, S. W. Polichnowski, Generation and reaction of (phenylmethylcarbene) pentacarbonyl tungsten(0), J. Am. Chem. Soc. 1977, 99, 2533; doi.org/10.1021/ja00450a021.
[109] C. P. Casey, S. W. Polichnowski, A. J. Shusterman, C. R. Jones, Reactions of benzylidene penta carbonyl-tungsten with alkenes, J. Am. Chem. Soc. 1979, 101, 7282; doi.org/10.1021/ja00518a025.
[110] M. Brookhart, M. B. Humphrey, H. J. Kratzor, G. O. Nelson, Reactions of .eta.5-C5H5(CO)2FeCHC6H5+ with alkenes alkynes. Observation of efficient benzylidene-transfer reactions, J. Am. Chem. Soc. 1980, 102, 7802; doi.org/10.1021/ja00546a039.
[111] M. Brookhart, Y. Liu, E. W. Goldman, D. A. Timmers, G. D. Williams, Enantioselective cyclopropane synthesis using the chiral carbene complexes (SFe)-and(RFe)-C5H5(CO)(PR3)Fe: CHCH3+. A mechanistic analysis of carbene transfer reaction, J. Am. Chem. Soc. 1991, 113, 927; doi.org/10.1021/ja00003a028.
[112] M. Brookhart, Y. Liu, Investigation of the stereochemistry of iron-carbon.alpha.bond cleavage when phenylcyclopropane is generalized by.gamma.-ionization of stereospecifically deuterate C5H5 (CO)2FeCHDCHDCH(OCH3)C6H5 complexes. A transition-state model for transfer of the carbene ligand from C5H5 (O)2Fe: CHR+ to alkenes, J. Am. Chem. Soc. 1991, 113, 939; doi.org/10.1021/ja00003a029.
[113] M. Brookhart, Y. Liu, R. C. Buck, Diastereoselective reactions of chiral at iron carbene complexes C5H5(CO)(PR3)Fe: CHR+, synclinal isomers are more reactive than anticlinal isomers, J. Am. Chem. Soc. 1988, 110, 2337; doi.org/10.1021/ja00215a074.
[114] Q. Wang, F. H. Försterling, M. M. Hossain, Study of the origin of enantioselectivity in cyclopropanation reactions using the chiral iron carbene complex [(η5-C5H5)(CO)2Fe=CH [(η6-O-MeOC6H4)Cr(CO)3]]+, J. Organomet. Chem. 2005, 690, 6238; doi.org/10.1016/j.jorganchem.2005.09.025.
[115] F. Wang, Q. Meng, M. Li, Density functional computations of the cyclopropanation of ethene catalyzed by iron(II)carben complexes Cp(CO)(L)Fe=CHR, L = CO, PMe3, R = Me, OMe, Ph, CH2Me, Int. J. Quantum Chem. 2008, 108, 945; doi.org/10.1002/qua.21559.
[116] G. S. Remya, C. H. Suresh, On the ineffectiveness of Grubbs type iron olefin methathesis catalysts: Role of spin state isomerism and cyclopropanation, Inarganica Chimica Acta, 2022, 538, 120971; doi.org/10.1016/j.ica.2022.120971.
[117] M. Mauksch, S. B. Tsogoeva, Iron-Catalyzed olefin metathesis: Recent theoretical and experimental advances, Chem. Eur. J. 2022, 28, e202201414; doi.org/10.1002/chem.202201414.
[118] Meng, Q.; Li, M.; Tang, D.; Shen, W.; Zhang, Density functional studies on copper-catalyzed asymmetric cyclopropanation of diazoacetate with alkene, J. J. Mol. Str. (THEOCHEM) 2004, 711, 193; doi.org/10.1016/j.theochem.2004.06.050.
[119] K. C. Brown, T. Kodadek, A transition-sate model for the rhodium porphyrin catalyzed cyclopropanation of alkenes by diazoesters, J. Am. Chem. Soc. 1992, 114, 8336; doi.org/10.1021/ja00047a081.
[120] J. R. Wolf, C. G. Hamaker, J. P. Djukic, T. Kodadek, L. K. Woo, Sape and stereoselective cyclopropanation of alkenes catalyzed iron porphyrins, J. Am. Chem. Soc. 1995, 117, 9194; doi.org/10.1021/ja00141a011.
[121] J. I. García, G. Jiménez-Osés, V. Martinez-Merino, J. A. Mayoral, E. Pires, I. Villalba, QM/MM Modeling of enantioselective Pybox ruthenium and box-copper-catalyzed cyclopropanation reactions: scope, performace, and applications to ligand design, Chem. Eur. J. 2007, 13, 4064; doi.org/10.1002/chem.2006.01358.
[122] M. Basato, C. Tubaro, A. Biffis, M. Bonato, G. Buscemi, F. Lighezzolo, P. Lunardi, C. Vianini, F. Benetollo, A. Del Zotto, Reactions of diazocomponds with alkenes catalyzed by [RuCl(cod)(Cp)]: Effect of the substitutents in the formation of cyclopropanation or metathesis products, Chem. Eur. J. 2009, 15, 1516; doi.org/10.1002/chem.200801211.
[123] DFT Prediction and experimental observation of subrtate induced catalyst decomposition in ruthenium catalyzed olefin methatesis, J. Am. Chem. Soc. 2004, 126, 14332; doi.org/10.1021/ja0453174 (Supporting information).
[124] M. Jawiczak, A. Marczgk, B. Trzaskowski, Decomposition of ruthenium olefin metathesis catalyst, Catalysts 2020, 10, 887; doi.10.3390/catal10080887.
Cite This Article
  • APA Style

    Mitan Carmen-Irena. (2023). Concerted [2+2] Oxidative-Cycloadition-Cycloreversion versus Cyclopropanation Reactions at M-carbene Center. Science Journal of Chemistry, 11(3), 108-136. https://doi.org/10.11648/j.sjc.20231103.14

    Copy | Download

    ACS Style

    Mitan Carmen-Irena. Concerted [2+2] Oxidative-Cycloadition-Cycloreversion versus Cyclopropanation Reactions at M-carbene Center. Sci. J. Chem. 2023, 11(3), 108-136. doi: 10.11648/j.sjc.20231103.14

    Copy | Download

    AMA Style

    Mitan Carmen-Irena. Concerted [2+2] Oxidative-Cycloadition-Cycloreversion versus Cyclopropanation Reactions at M-carbene Center. Sci J Chem. 2023;11(3):108-136. doi: 10.11648/j.sjc.20231103.14

    Copy | Download

  • @article{10.11648/j.sjc.20231103.14,
      author = {Mitan Carmen-Irena},
      title = {Concerted [2+2] Oxidative-Cycloadition-Cycloreversion versus Cyclopropanation Reactions at M-carbene Center},
      journal = {Science Journal of Chemistry},
      volume = {11},
      number = {3},
      pages = {108-136},
      doi = {10.11648/j.sjc.20231103.14},
      url = {https://doi.org/10.11648/j.sjc.20231103.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20231103.14},
      abstract = {The selectivity of olefin metathesis catalyzed by metal-alkylidene LnM=CHR, a reversible sequence of concerted [2+2] oxidative-cycloadition-cycloreversion at metal center, which fits to π–CAM (Complex Assisted Metathesis) principle or π-bond mode, in other words a transalkylidenation reaction through a metallacyclobutane intermediate, as well as the cyclopropanation reactions depends mostly on the structure of the catalysts. Cyclopropane affords as side product in the presence of the Schrock or Grubbs metal carbene complex which alternatively decomposed through β-hydride transfer, or as the major product in the presence of the Fischer carbene complex. The cyclopropnanation mechanisms are concerted or stepwise. The insertion of the transition-metal atom into a C-C bond of cyclopropane is predicted to form MCH2 + C2H4, through a formal retrocarbene addition, a reverse reaction cyclopropane – metallacyclobutane. Five resonance structures are representative for the metal-carbon bond of alkylidene complexes: 1. ethylene, corresponding to the singlet coupling of a neutral species, 2. π ylide, corresponding to a covalent M-C σ bond and a dative carbon to metal π-back bond, 3. as a dative carbon to metal σ-bond coupled with a dative to carbon π-back bond, corresponding to the singlet-carbene model of bonding, 4. as a four-electron donor corresponding to coordination of the CH22- ligand to a LnMq+2 fragment in a ionic fashion, and 5. σ ylide, corresponding to a dative M-C σ bond coupled with a covalent M-C π bond. The reactivity of the M-carbene depends on the predominance of one resonance structure over the other, therefore the nucleophilic resonance (LnMq+CH2q-) contribute approximately 50% to the ground-state wave function, the neutral resonance structures (LnM0CH20) 45%, and the electrophilic resonance structures (LnMq-CH2q+) 5%. The bonding situation, derived from the contribution of the electrostatic and the orbital interaction, the strength of the σ donor and π acceptor bonding, was discussed in terms of well-defined quantum chemical methods.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Concerted [2+2] Oxidative-Cycloadition-Cycloreversion versus Cyclopropanation Reactions at M-carbene Center
    AU  - Mitan Carmen-Irena
    Y1  - 2023/06/27
    PY  - 2023
    N1  - https://doi.org/10.11648/j.sjc.20231103.14
    DO  - 10.11648/j.sjc.20231103.14
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 108
    EP  - 136
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20231103.14
    AB  - The selectivity of olefin metathesis catalyzed by metal-alkylidene LnM=CHR, a reversible sequence of concerted [2+2] oxidative-cycloadition-cycloreversion at metal center, which fits to π–CAM (Complex Assisted Metathesis) principle or π-bond mode, in other words a transalkylidenation reaction through a metallacyclobutane intermediate, as well as the cyclopropanation reactions depends mostly on the structure of the catalysts. Cyclopropane affords as side product in the presence of the Schrock or Grubbs metal carbene complex which alternatively decomposed through β-hydride transfer, or as the major product in the presence of the Fischer carbene complex. The cyclopropnanation mechanisms are concerted or stepwise. The insertion of the transition-metal atom into a C-C bond of cyclopropane is predicted to form MCH2 + C2H4, through a formal retrocarbene addition, a reverse reaction cyclopropane – metallacyclobutane. Five resonance structures are representative for the metal-carbon bond of alkylidene complexes: 1. ethylene, corresponding to the singlet coupling of a neutral species, 2. π ylide, corresponding to a covalent M-C σ bond and a dative carbon to metal π-back bond, 3. as a dative carbon to metal σ-bond coupled with a dative to carbon π-back bond, corresponding to the singlet-carbene model of bonding, 4. as a four-electron donor corresponding to coordination of the CH22- ligand to a LnMq+2 fragment in a ionic fashion, and 5. σ ylide, corresponding to a dative M-C σ bond coupled with a covalent M-C π bond. The reactivity of the M-carbene depends on the predominance of one resonance structure over the other, therefore the nucleophilic resonance (LnMq+CH2q-) contribute approximately 50% to the ground-state wave function, the neutral resonance structures (LnM0CH20) 45%, and the electrophilic resonance structures (LnMq-CH2q+) 5%. The bonding situation, derived from the contribution of the electrostatic and the orbital interaction, the strength of the σ donor and π acceptor bonding, was discussed in terms of well-defined quantum chemical methods.
    VL  - 11
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Organic Chemistry, Institute of Organic and Supramolecular Chemistry “C. D. Nenitescu”, Bucharest, Roumania

  • Sections