Using variational method for an elliptical Gaussian optical beam trial function, self –action in bulk chalcogenide glass (Kerr media) is investigated. Emphasis is laid on the study of variation in beam width, curvature, phase and intensity of the beam with propagation distance. Solutions predict stationary self-focusing of the elliptical beam and an effective beam collapse at 10Pcr input power. These study is significant in the choice of parameters in optical communications
Published in | American Journal of Optics and Photonics (Volume 3, Issue 4) |
DOI | 10.11648/j.ajop.20150304.11 |
Page(s) | 43-47 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Self- Focusing, Kerr Nonlinearity, Gaussian Laser Beam
[1] | R.W. Boyd (eds) , Self-focusing : Past and Present, Topics in Applied Physics, 2009, Ch.4 Springer Science. |
[2] | Report to A.P.S. of the Study Group on Science and Technology of Directed Energy Weapons, Rev. Mod. Phys,(1987), 59, 589. |
[3] | S. E. Bodner, D. G. Colombant, J H. Gardner, R. H Lehmberg, S. P. Obenschain, L. Phillips, A .J Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan and H. T .Powell, Phys. Plasmas,1998, 5, 1901. |
[4] | P. M. Lushnikov and N. Vladimirova, Nonlinear combining of laser beams, arXiv: 1404. 1050v1 [nlin.PS], 2014. |
[5] | P. M. Lushnikov, S. A. Dyachenko, and N. Vladimirova, Beyond leading-order logarithmic scaling in the catastrophic self focusing of a laser beam in kerr media, Phys. Rev. A,2013, 88, 013845. |
[6] | N. Berti, W. Ettoumi,J. Kasparian,and J.-P.Wolf , Reversibility of laser filamentation, Optics express,2014, 21062. |
[7] | I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. M´echin,P. M. Moselund, and O.Bang, Thulium pumped mid-infrared 0.9-9 μm supercontinuum generation inconcatenated fluoride and chalcogenide glass fibers,Optics express,2014, 3959. |
[8] | R .Vyas and V. F. Gupta, Appl. Opt.1988, 27, 4701. |
[9] | P. A. Konyaev and V. P. Lukin, Sov. J. Quantum Elect,1988, 18, 217. |
[10] | V. V. Semak and M. N. Shneider, Splendeurs et misères de theory of laser beam propagation in nonlinear media,2014, arXiv:1404.3744, Cornell University Library. |
[11] | R Y Chio, E Garmire and C H Townes, Phys. Rev. Lett,1964, 13, 479. |
[12] | M Hercher, Beam propagation in transparent media, J. Opt. Soc. Am,1964, 54, 563. |
[13] | G.A. Askaryan, Effects of the gradient of a strong electromagnetic beam on electrons and atoms, Sov. Phys. JETP 1962,15, 1088-1090 (transl. Zh. Eksp. i Teor. Fiz. 42, 1672.) |
[14] | J. A. Fleck, Jr., and P. L. Kelley, Temporal aspect of the self-focusing of optical beams, Appl. Phys. Lett,1969,15, 313. |
[15] | M.D. Feit, and J. A. Fleck, Jr., Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am, 1988,B 5, 633. |
[16] | K. D. Moll, A. L. Gaeta, and G. Fibich, Self-similar optical wave collapse: observation of the townes profile, Phys. Rev. Lett, 2003, 90, 203902-1. |
[17] | G. Fibich, W. Ren, and X.P. Wang, Numerical simulations of self-focusing of ultrafast laser pulses, Phys. Rev. E, 2003, 67, 056603. |
[18] | R. M. Joseph, A. Taflove, Spatial soliton deflection mechanism indicated by FDTD Maxwell’s equations modeling, IEEE Photon. Tech. Lett,1994, 6, 1251. |
[19] | R. W. Ziolkowski, and J. B. Judkins, Full-wave vector Maxwell equation modeling of the self-focusing of ultra-short optical pulses in a nonlinear Kerr medium exhibiting a finite response time, J. Opt. Soc. Am. B, 1993,10, 186. |
[20] | A.Couairon, A.Mysyrowicz, Femtosecond Filamentation in Transparent Media, Physics Reports, 2007,441, 47 . |
[21] | Y. Sivan, G. Fibich, B. Ilan, and M. I. Weinstein, Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons, Physical Review,2008, doi:10.1103/E.78.046602 |
[22] | V.V. Semak and M.N. Shneider, Effect of power losses on self-focusing of high intensity laser beam in gases and role of plasma in generation of multiple filaments, J. Phys. D: Appl. Phys,2013, 46 185502 doi:10.1088/0022-3727/46/18/185502 |
[23] | J. T. Gopinath, M. Soljacic, E.P. Ippen, V.N. Fuflyigin, W.A. King and M. Shurgalin, Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications, J. Appl. Phys,2004, 96, 6931-6933. |
[24] | S. Sagadevan, E.Chandraseelan, Applications of chalcogenide glasses : An overview,IJCTR,2014,6,11. |
[25] | D Anderson, M Bonnedal and M Lisak, Phys. Fluids, 1979, 22, 1838. |
[26] | Anderson, D. and M. Bonnedal, Variational approach to nonlinear self-focusing of Gaussian laser beams, Phys. Fluids, 1979,Vol. 22, 105-109. |
[27] | J. Requejo-Isidro , A.K. Mairaj , V. Pruneri , D.W. Hewak , M.C. Netti ,J.J.Baumberg, Self refractive non-linearities in chalcogenide based glasses, Journal of Non crystalline solids,2003,317,241-246. |
[28] | R A Meyers, Encyclopedia of physical science and technology1987, 7, 189. |
[29] | P Das, Lasers and Optical Engg, Narosa Publ. House, New Delhi,1991. |
[30] | A L Schawlow, Lasers and light ,W H Freeman & Co,1969. |
[31] | P.L. Kelley, Self-focusing of optical beams. Phys. Rev. Lett, 1965, 15, 1005–1008. |
[32] | R.Y.Chiao, T. K. Gustafson, and P. L. Kelley, Self-Focusing of Optical Beams; Springer series: Topics in appl.Physics,vol114,Springer,NY,Editors:R.W.Boyd, S.G.Lukishova,Y.R.Shen,2009;605 p.illus,ISBN:978-0-387-32147-9. |
[33] | G. Fibich, S. Eisenmann, B. Ilan, Y. Erlich, M. Fraenkel, Z. Henis, A.L. Gaeta, and A. Zigler, Self-focusing distance of very high power laser pulses, Opt. Express, 2005; 13, 5897–5903. |
[34] | G. Fibich and B. Ilan, Self-focusing of elliptic beams: An example of the failure of the aberration less approximation, JOSA B, 2000; 17, 1749–1758. |
[35] | G. Fibich, Some modern aspects of self-focusing theory, Self-focusing : Past and Present, Topics in Applied Physics, Ch.17, Springer Science,2009;114, 413-438. |
[36] | B.E.A. Saleh and M.C. Carl Teich, Fundamental of Photonics, beam optics,chapter3,JohnWiley&Sons, Inc,1991. |
[37] | R. Kaur, T. Gill and R. Mahajan, Self-focusing, self-modulation and stability properties of laser beam propagating in plasma: A variational approach, Journal of Physics: Conference Series, 2010; 208. |
[38] | R. K. Khanna and P. K. Nagar, self-focusing of Gaussian laser beam in parabolic profile optical fiber having Kerr nonlinearity, IJPAP, 2001, 39. |
APA Style
Chironjit Hazarika, Abhijeet Das, Subrata Hazarika. (2015). A Study of Beam Parameters Using NLSE in Chalcogenide Glass Through Variational Method with a Gaussian Trial Function. American Journal of Optics and Photonics, 3(4), 43-47. https://doi.org/10.11648/j.ajop.20150304.11
ACS Style
Chironjit Hazarika; Abhijeet Das; Subrata Hazarika. A Study of Beam Parameters Using NLSE in Chalcogenide Glass Through Variational Method with a Gaussian Trial Function. Am. J. Opt. Photonics 2015, 3(4), 43-47. doi: 10.11648/j.ajop.20150304.11
AMA Style
Chironjit Hazarika, Abhijeet Das, Subrata Hazarika. A Study of Beam Parameters Using NLSE in Chalcogenide Glass Through Variational Method with a Gaussian Trial Function. Am J Opt Photonics. 2015;3(4):43-47. doi: 10.11648/j.ajop.20150304.11
@article{10.11648/j.ajop.20150304.11, author = {Chironjit Hazarika and Abhijeet Das and Subrata Hazarika}, title = {A Study of Beam Parameters Using NLSE in Chalcogenide Glass Through Variational Method with a Gaussian Trial Function}, journal = {American Journal of Optics and Photonics}, volume = {3}, number = {4}, pages = {43-47}, doi = {10.11648/j.ajop.20150304.11}, url = {https://doi.org/10.11648/j.ajop.20150304.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20150304.11}, abstract = {Using variational method for an elliptical Gaussian optical beam trial function, self –action in bulk chalcogenide glass (Kerr media) is investigated. Emphasis is laid on the study of variation in beam width, curvature, phase and intensity of the beam with propagation distance. Solutions predict stationary self-focusing of the elliptical beam and an effective beam collapse at 10Pcr input power. These study is significant in the choice of parameters in optical communications}, year = {2015} }
TY - JOUR T1 - A Study of Beam Parameters Using NLSE in Chalcogenide Glass Through Variational Method with a Gaussian Trial Function AU - Chironjit Hazarika AU - Abhijeet Das AU - Subrata Hazarika Y1 - 2015/08/11 PY - 2015 N1 - https://doi.org/10.11648/j.ajop.20150304.11 DO - 10.11648/j.ajop.20150304.11 T2 - American Journal of Optics and Photonics JF - American Journal of Optics and Photonics JO - American Journal of Optics and Photonics SP - 43 EP - 47 PB - Science Publishing Group SN - 2330-8494 UR - https://doi.org/10.11648/j.ajop.20150304.11 AB - Using variational method for an elliptical Gaussian optical beam trial function, self –action in bulk chalcogenide glass (Kerr media) is investigated. Emphasis is laid on the study of variation in beam width, curvature, phase and intensity of the beam with propagation distance. Solutions predict stationary self-focusing of the elliptical beam and an effective beam collapse at 10Pcr input power. These study is significant in the choice of parameters in optical communications VL - 3 IS - 4 ER -