| Peer-Reviewed

First Investigation of Optical Properties and Local Structure of
Gd3+ Doped Nano-Crystalline GeSe2

Received: 31 October 2016     Accepted: 12 November 2016     Published: 29 November 2016
Views:       Downloads:
Abstract

Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. The crystal structure, local structure and emission properties are investigated. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41nm for GeSe2 and 48nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1ev and 4.8ev for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ~ 202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its FWHM is reduced by ~ 50% accompanied by an intensity increase of about ~ 17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ~ 604 nm. This band is splitted into two separated bands with higher intensity. The detected emission bands at wavelength > 650 nm are assigned to transmission from 6GJ to the different 6PJ terms.

Published in American Journal of Optics and Photonics (Volume 4, Issue 5)
DOI 10.11648/j.ajop.20160405.11
Page(s) 40-45
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Nano-Crystalline GeSe2Doped with Gd3+, Microstructure, Optical, Raman and Photoluminescence Characteristics

References
[1] R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo and H. Jain, J. Non-Cryst. Solids, 353(2007) 2066.
[2] H. Nicolas, J. M. Laniel, R. Valle and A. Villeneuve, Opt. Lett, 28(2003) 965.
[3] W. J. Miniscalco and M. J. F. Digonnet (Ed.), Rare Earth Doped Fiber Lasers and Amplifiers, Marcel Dekker, New York, (1993) 35.
[4] L. Russo, M. Vlcek and H. Jain, Glass Technol, 46(2005) 94.
[5] K. Tanaka, J. Non-Cryst. Solids, 352 (2006) 2580.
[6] L. A. Wahab, A. Adam, M. R. Balboul, N. Makram, A. A. El-Ela and K. Sedeek, J. Physica B, 387 (2007) 81.
[7] K. Sedeek, M. Fadel and M. A. Afify, J. Mater.Sci, 33 (1998) 4621.
[8] S. R. Elliot and A. T. Steel, J.Phys.Rev.Lett, 57 (1986) 1316.
[9] K. Sedeek, J. Phys.D: Appl. Phys, 26 (1993) 130.
[10] T. Schweizer, D. W. Hewak, B. N. Samson and D. N. Payne, J. Lumin, 72±74 (1997) 421.
[11] S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi and N. Soga, J.Am.Ceram. Soc, 78 (1995) 2917.
[12] R. Reisfeld, Ann.Chim.Fr, 7 (1982) 147.
[13] B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera and I. D. Aggarwal, J. Non-Cryst. Solids, 256&257 (1999) 253.
[14] P. Tronc, M. Bensoussan, A. Brenac and C. Sebenne, J. Phys. Rev. B, 8 (1973) 5947.
[15] R. J. Menanich and S. A. Solin, Commun, 21 (1977) 273; R. J. Nemanich, Phys. Rev. B, 16 (1977) 1655.
[16] Z. V. Popovic and P. M. Nikolic, J. Solid State Commun, 27 (1978) 561.
[17] K. Murase, T. Fukunago, P. C. Taylor (Ed.) and S. G. Bishop (Ed.), Optical Effects in Amorphous Semiconductours, AIP Conf. Proc. No.120 (AIP, New York, 1984) 449.
[18] Z. V. Popovic, Z. Jaksic, Y. S. Raptis and E. Anastassakis, J.Phys.Rev.B, 57 (1998) 3418.
[19] V. A. Vassilyev, M. Koo´s and I. K. Somogyi, Solid State Commun, 22 (1977) 633.
[20] V. A. Vassilyev, M. Koo´s and I. K. Somogyi, Philos. Mag. B, 39 (1979) 333.
[21] R. A. Street and D. K. Biegelsen, Solid State Commun, 32 (1979) 339.
[22] G. Boulon, J.Rev.Phys. Appl, 21 (1986) 689.
[23] G. Blasse, ed. Mat. Chem. Phys, 16 (1987) 3-371.
[24] A. J. De Vries, M. F. Hazenkamp and G. Blasse, J. Luminescence, 42 (1988) 275.
[25] G. Blasse, H. S. Kiliaan, A. J. de, Vries, J. Less-Common Met, 129 (1986) 139.
[26] K. N. Shinde, V. B. Pawade, S. J. Dhoble, A. Hakeem, Impact of temperatureon Na2Sr(PO4)F:Eu3+ phosphor, Luminescence, 29(2014) 352–6.
[27] S. Tamboli, B. Rajeswari and S. J. Dhoble, J. Biological and Chemical luminescence, 13 (2016) 551.
[28] P. Neˇmec, B. Frumarova´, M. Frumar and J. Oswald, J.Phys.Chem.Solids, 61 (2000) 1583.
[29] P. Scardi, L. Lutterotti and P. Masitrelli, Powder Diff, 9(3) (1994) 180.
[30] K. El-Sayed, Z. K. Heiba, K. Sedeek and H. H. Hantour, J. Alloys and Comp, 530 (2012) 102.
[31] R. K. Pan, H. Z. Tao, H. C. Zang, X. J. Zhao and T. J. Zhang, J. Alloys and Comp, 484 (2009) 645.
[32] N. Kumagai, J. Shirafuji and Y. Inuishi, J.Phy.Soc.Jpn, 42 (1977) 1261.
[33] P. M. Bridenbaugh, G. P. Espinosa, J. E. Griffiths, J. C. Phillips and J. P. Remeika, Phys.Rev.B, 20 (1979) 4140.
[34] T. Nakaoka, Y. Wang, K. Murase, O. Matsuda and K. Inoue, Phys. Rev,61 (2000) 15569.
[35] R. Holomb, V. Mitsa, E. Akalin, S. Akyuz and M. Sichka, J.Non-Cryst.Solids, 373–374 (2013) 51.
[36] Z. V. Popovic and H. J. Stolz, J. phys. stat. sol. (b), 108 (1981) 153.
[37] R. A. Street and D. K. Biegelsen, J. Non-Cryst. Solid, 32 (1979) 339.
[38] M. Koos, I. Kosa Somogyi and V. A. Vassilyev, J. Non-Cryst.Solids, 43 (1981) 245.
[39] M. Kastner and S. J. Hudgens, Phil. Mag. B, 37 (1978) 665.
[40] M. Kastner and H. Fritzsche, Phil. Mag. B, 37 (1978) 199.
[41] R. T. Wegh and A. Meijerink, J.ActaPhysica A, 90 (1996) 333.
[42] L. H. Brixner and G. Blasses, J.Chem.phys.lett, 157 (1989) 283.
Cite This Article
  • APA Style

    H. Hantour. (2016). First Investigation of Optical Properties and Local Structure of Gd3+ Doped Nano-Crystalline GeSe2. American Journal of Optics and Photonics, 4(5), 40-45. https://doi.org/10.11648/j.ajop.20160405.11

    Copy | Download

    ACS Style

    H. Hantour. First Investigation of Optical Properties and Local Structure of Gd3+ Doped Nano-Crystalline GeSe2. Am. J. Opt. Photonics 2016, 4(5), 40-45. doi: 10.11648/j.ajop.20160405.11

    Copy | Download

    AMA Style

    H. Hantour. First Investigation of Optical Properties and Local Structure of Gd3+ Doped Nano-Crystalline GeSe2. Am J Opt Photonics. 2016;4(5):40-45. doi: 10.11648/j.ajop.20160405.11

    Copy | Download

  • @article{10.11648/j.ajop.20160405.11,
      author = {H. Hantour},
      title = {First Investigation of Optical Properties and Local Structure of Gd3+ Doped Nano-Crystalline GeSe2},
      journal = {American Journal of Optics and Photonics},
      volume = {4},
      number = {5},
      pages = {40-45},
      doi = {10.11648/j.ajop.20160405.11},
      url = {https://doi.org/10.11648/j.ajop.20160405.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20160405.11},
      abstract = {Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. The crystal structure, local structure and emission properties are investigated. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41nm for GeSe2 and 48nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1ev and 4.8ev for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ~ 202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its FWHM is reduced by ~ 50% accompanied by an intensity increase of about ~ 17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ~ 604 nm. This band is splitted into two separated bands with higher intensity. The detected emission bands at wavelength > 650 nm are assigned to transmission from 6GJ to the different 6PJ terms.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - First Investigation of Optical Properties and Local Structure of Gd3+ Doped Nano-Crystalline GeSe2
    AU  - H. Hantour
    Y1  - 2016/11/29
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajop.20160405.11
    DO  - 10.11648/j.ajop.20160405.11
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 40
    EP  - 45
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20160405.11
    AB  - Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. The crystal structure, local structure and emission properties are investigated. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41nm for GeSe2 and 48nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1ev and 4.8ev for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ~ 202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its FWHM is reduced by ~ 50% accompanied by an intensity increase of about ~ 17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ~ 604 nm. This band is splitted into two separated bands with higher intensity. The detected emission bands at wavelength > 650 nm are assigned to transmission from 6GJ to the different 6PJ terms.
    VL  - 4
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Faculty of Science, Al-Azhar University, Cairo, Egypt

  • Sections