In this study, a fluorescent compound; N, N'-Bis (2-Hydroxy Benzylidene) Benzidine, (C26H20N2O2) prepared and calculated by FT-IR, 1H NMR, UV-Vis and fluorescence procedures. The 1H NMR field examined in Chloroform-d solvent. The Fourier Transform-Infrared FT-IR in hard case detected in the area 4000-600 cm-1. The absorption spectrum of the Bis (2-Hydroxy Benzylidene) Benzidine resolved in tetrahydrofuran registered on the range 250-800nm. The fluorescence spectrum show in the region 520-700nm in different pH at room temperature. Photoluminescent properties of the title compound examined in tetrahydrofuran, Chloroform, acetone, and Toluene. The intensity and Stoke’s move of N, N' Bis (2-Hydroxy Benzylidene) Benzidine in THF solvent found greater than other solvents. The structural value, fundamental vibration modes, Proton Nuclear magnetic resonance isotropic chemical changes, and absorption spectrum of the N, N'-Bis (2-Hydroxy Benzylidene) Benzidine computed by density functional theory (DFT) using B3LYP/6-311G (d, p) basis set.
Published in | American Journal of Optics and Photonics (Volume 5, Issue 4) |
DOI | 10.11648/j.ajop.20170504.11 |
Page(s) | 36-44 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Fluorescence, N, N' Bis (2-Hydroxy Benzylidene) Benzidine, Solvent Effect, PH Effect, Density Functional Theory (DFT)
[1] | A. Barbieri, G. Accorsi, N. Armaroli. Luminescent complexes beyond the platinum group: the d10 avenue. Chem. Commun. (2008). 2185-2193. |
[2] | X. Q. Chen, X. Z. Tian, I. Shin, J. Yoon. A “turn-on” fluorescent probe for hypochlorous acid: convenient synthesis, good sensing. Chem. Soc. Rev. 40, (2011). 4783. |
[3] | Guoqiang Yang, Shayu Li, Shuangqing Wang1, Rui Hu, Jiao Feng, Yi Li, and Yan Qian. Novel fluorescent probes based on intramolecular charge- and proton-transfer compounds Pure Appl. Chem., Vol. 85, No. 7, (2013). pp. 1465–1478. |
[4] | bT. L. YANG, aW. W. QIN, aZ. F. XIAO, and aW. S. LIU,. Synthesis and Infrared and Fluorescence Spectra of Europium and Terbium Complexes with a Novel Bis-Schiff Base Ligand Derived from 2,6-Diaminopyridine and Indole-2-carbaldehyde. Chem. Pap. 59 (1) (2005). 17-20. |
[5] | Takuya Terai & Tetsuo Nagano Pflügers Small-molecule fluorophores and fluorescent probes for bioimaging. Archiv - European Journal of Physiology, Volume 465, Issue 3, (2013). pp 347–359. |
[6] | E. Szajdzinska-Pietek, M. Wolszczak and A. Plonka, S. J. Schlick. Fluorescence Studies of Self-Assembly in Aqueous Solutions of Poly (ethylene-co-methacrylic acid) Ionomers. J. Am. Chem. Soc, 120, (1998). 4215-4221. |
[7] | J. Y. Ye, M. T. Myaing, T. B. Norris, T. P. Thomas and J. R. BakerBiosensing based on two-photon fluorescence measurements through optical fibers. Optics Letters, 27,. (2002) 1412-1414. |
[8] | C. S. Mitsiades, N. S. Mitsiades, T. T. Bronson, D. Chauhan, N. Munshi, S. P. Treon, C. A. Maxwell, L. Pilarski, T. Hideshima, R. M. Hoffman and K. C. Anderson. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res, 63, (2003). 6689. |
[9] | David W. Fink And Walter R. KoehlerpH Effects on fluorescenceof umbelliferone. Analytical Chemistry, Vol. 42, No. 9,. (1970). 990–993. |
[10] | C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, Using redundant internal coordinates to optimiz equilibrium geometries and transition states, J. Comput. Chem. 17 (1), 1996, 49-56. |
[11] | M. J. Frisch, J. A. Pople, J. S. Binkley,, " Self- Consistent molecular orbital methods25: supplementary function for Gaussian basis sets," J. Chem. Phys., 80 (7), 1984, 3265–3269. |
[12] | R. Ditchfield, "Self-consistent perturbation theory of diamagnetism. I. A Gauge-Invariant LCAO (Linear Combination of Atomic Orbitals) method for NMR chemical shifts," Mol. Phys., 27 (1974), 789–807. |
[13] | Z. Dong, X. Le, P. Zhou, C. Dong, J. Ma, .An “off–on–off” flu- orescent probe for the sequential detection of Zn2+ and hydrogensulfide in aqueous solution, New J. Chem. 38, (2014) 1802–1808. |
[14] | Geddes, C. D. et al., Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging, J. Phys. Chem. A. 107, (2003). 3443– 3449. |
[15] | Aslan, K., Gryczynski, I., Malicka, J., Lakowicz, J. R. Geddes, C. D.,. Metal-Enhanced Fluorescence: An Emerging Trend in Biotechnology, Curr. Opin. Biotechnol. 16, (2005) 55–62. |
[16] | Silverstein R. M., Webster F. X. Spectroscopic Identification of Organic Compound, sixth Ed., John Willey & Sons, New York, 1998. |
[17] | Mehmet Yıldırım & İsmet Kaya)” Synthesis of a Novel Fluorescent Schiff Base as a Possible Cu (II)Ion Selective Sensor” J Fluoresc, 20: (2010)771–777. |
[18] | Nagabalasubramanian P. B., Periandy S., Mohan S., Govindarajan M. "FTIR and FT Raman spectra, vibrational assignments, ab initio, DFT and normal coordinate analysis of α, α dichlorotoluene," Spectrochim. Acta, Vol. 73A (2), (2009). p.p. 277-280. |
[19] | Nasrin Soltani, Hosein Salavati, Nahid Rasouli, Mehrnoosh Paziresh, A. Moghadasi.” Electrochemical and Quantum Chemical Calculations of Two Schiff Bases as Inhibitor for Mild Steel Corrosion in Hydrochloric Acid Solution” IRAN J ANAL CHEM 2,. (2015) 22- 35 / 23. |
[20] | R. Yuste, "Fluorescence microscopy today," Nat Meth, vol. 2, (2005). pp. 902-904, 12. |
[21] | Oter O, Ertekin K, Kılınçarslan R, Ulusoy M, Çetinkaya B. Photo characterization of a novel fluorescent Schiff base and investigation of its utility as an optical Fe+3 sensor in PVC matrix. Dye Pigments 74: (2007) 730–735. |
APA Style
Zeyad A. Saleh, Dhaidan Kh. Kafi. (2017). Synthesis and Fluorescence Spectrum of N, N' Bis (2-Hydroxy Benzylidene) Benzidine with Different Solvents and Different PH. American Journal of Optics and Photonics, 5(4), 36-44. https://doi.org/10.11648/j.ajop.20170504.11
ACS Style
Zeyad A. Saleh; Dhaidan Kh. Kafi. Synthesis and Fluorescence Spectrum of N, N' Bis (2-Hydroxy Benzylidene) Benzidine with Different Solvents and Different PH. Am. J. Opt. Photonics 2017, 5(4), 36-44. doi: 10.11648/j.ajop.20170504.11
AMA Style
Zeyad A. Saleh, Dhaidan Kh. Kafi. Synthesis and Fluorescence Spectrum of N, N' Bis (2-Hydroxy Benzylidene) Benzidine with Different Solvents and Different PH. Am J Opt Photonics. 2017;5(4):36-44. doi: 10.11648/j.ajop.20170504.11
@article{10.11648/j.ajop.20170504.11, author = {Zeyad A. Saleh and Dhaidan Kh. Kafi}, title = {Synthesis and Fluorescence Spectrum of N, N' Bis (2-Hydroxy Benzylidene) Benzidine with Different Solvents and Different PH}, journal = {American Journal of Optics and Photonics}, volume = {5}, number = {4}, pages = {36-44}, doi = {10.11648/j.ajop.20170504.11}, url = {https://doi.org/10.11648/j.ajop.20170504.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20170504.11}, abstract = {In this study, a fluorescent compound; N, N'-Bis (2-Hydroxy Benzylidene) Benzidine, (C26H20N2O2) prepared and calculated by FT-IR, 1H NMR, UV-Vis and fluorescence procedures. The 1H NMR field examined in Chloroform-d solvent. The Fourier Transform-Infrared FT-IR in hard case detected in the area 4000-600 cm-1. The absorption spectrum of the Bis (2-Hydroxy Benzylidene) Benzidine resolved in tetrahydrofuran registered on the range 250-800nm. The fluorescence spectrum show in the region 520-700nm in different pH at room temperature. Photoluminescent properties of the title compound examined in tetrahydrofuran, Chloroform, acetone, and Toluene. The intensity and Stoke’s move of N, N' Bis (2-Hydroxy Benzylidene) Benzidine in THF solvent found greater than other solvents. The structural value, fundamental vibration modes, Proton Nuclear magnetic resonance isotropic chemical changes, and absorption spectrum of the N, N'-Bis (2-Hydroxy Benzylidene) Benzidine computed by density functional theory (DFT) using B3LYP/6-311G (d, p) basis set.}, year = {2017} }
TY - JOUR T1 - Synthesis and Fluorescence Spectrum of N, N' Bis (2-Hydroxy Benzylidene) Benzidine with Different Solvents and Different PH AU - Zeyad A. Saleh AU - Dhaidan Kh. Kafi Y1 - 2017/10/30 PY - 2017 N1 - https://doi.org/10.11648/j.ajop.20170504.11 DO - 10.11648/j.ajop.20170504.11 T2 - American Journal of Optics and Photonics JF - American Journal of Optics and Photonics JO - American Journal of Optics and Photonics SP - 36 EP - 44 PB - Science Publishing Group SN - 2330-8494 UR - https://doi.org/10.11648/j.ajop.20170504.11 AB - In this study, a fluorescent compound; N, N'-Bis (2-Hydroxy Benzylidene) Benzidine, (C26H20N2O2) prepared and calculated by FT-IR, 1H NMR, UV-Vis and fluorescence procedures. The 1H NMR field examined in Chloroform-d solvent. The Fourier Transform-Infrared FT-IR in hard case detected in the area 4000-600 cm-1. The absorption spectrum of the Bis (2-Hydroxy Benzylidene) Benzidine resolved in tetrahydrofuran registered on the range 250-800nm. The fluorescence spectrum show in the region 520-700nm in different pH at room temperature. Photoluminescent properties of the title compound examined in tetrahydrofuran, Chloroform, acetone, and Toluene. The intensity and Stoke’s move of N, N' Bis (2-Hydroxy Benzylidene) Benzidine in THF solvent found greater than other solvents. The structural value, fundamental vibration modes, Proton Nuclear magnetic resonance isotropic chemical changes, and absorption spectrum of the N, N'-Bis (2-Hydroxy Benzylidene) Benzidine computed by density functional theory (DFT) using B3LYP/6-311G (d, p) basis set. VL - 5 IS - 4 ER -