In this work, we present a particular nonlinear transmission line called chameleon nonlinear transmission line. In fact, the chameleon’s behavior is related to the fact that without changing its appearance, the line can exhibit alternatively purely right - or left - handed behavior. This transmission line is different to the composite one. So, the goal of this work is to demonstrate that this special line can support the propagation of soliton light pulse subjected to quintic – phase modulation, improve the freak wave’s mechanism of generation and verify the chameleon’s behavior of the line. Consequently, we employ collective coordinate’s theory in order to give a great characterization of the light pulse. Then, we introduce an upgraded function called “type II Ansatz function” with eight collective coordinates compared to the conventional Gaussian Ansatz with six collective coordinates. We show that the two additional coordinates will allow us to improve the technique of measurement of internal excitation leading to the generation of rogue events. Moreover, these coordinates will give supplemental details on frequency shift and chirp distortions during the generation of specific rogue events such as “wall of waves”, tree structures, multi - wave trains, Kuznetsov - Ma breathers, Akhmediev breathers, Peregrine solitons and triangular rogue waves. The stability of the soliton light pulse will be also investigated at specific frequency ranges.
Published in | American Journal of Optics and Photonics (Volume 8, Issue 3) |
DOI | 10.11648/j.ajop.20200803.12 |
Page(s) | 61-73 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2020. Published by Science Publishing Group |
Triangular Rogue Waves, Chameleon Transmission Line, Multi - Wave Trains, Tree Structures, Collective Coordinates
[1] | V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Uspekhi (1968); 10: 509 - 514. |
[2] | B. Tütüncü, H. Torpi, B. Urul, A comparative study on different types of metamaterials for enhancement of microstrip patch antenna directivity at the Ku-band (12 GHz), Turk J. Elec. Eng. and Comp. Sci. (2018); 26: 1171 - 1179. |
[3] | C. Caloz, H. Okabe, T. Iwai and T. Itoh, Transmission line approach of left-handed (LH) materials, USNC/URSI national radio science meeting, San Antonio, TX, June (2002); 1: 39. |
[4] | G. V. Eleftheriades, A. K. Iyer and P. C. Kremer, Planar negative refractive index media using periodically L-C loaded transmission lines, IEEE Trans Microwave Theory Tech. (2002); 50: 2702 - 2712. |
[5] | A. B. Kozyrev and D. W. Vd. Weide, Nonlinear left-handed transmission line metamaterials, J. Phys. D (2008); 41:173001 – 173010. |
[6] | A. B. Kozyrev and D. W. van der Weide, Nonlinear wave propagation phenomena in left-handed transmission-line media, IEEE Trans Microwave Theory Tech. (2005); 53: 238 - 245. |
[7] | Gharakhili, F. G.; Shahabadi, M.; Hakkak, M. Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors, Progress In Electromagnetics Research, PIER (2009); 96: 237 - 249. |
[8] | Z. Wang, Y. Feng, B. Zhu, J. Zhao and T. Jiangn, Dark Schrödinger solitons and harmonic generation in left-handed nonlinear transmission line, J. Appl. Phys. (2010); 107: 094907. |
[9] | J. Ogasawara and K. Narahara, Experimental characterization of left-handed transmission line with regularly spaced Schottky varactors, IEICE Electron. Express. (2010); 7(9): 608 - 614. |
[10] | L. Q. English, S. G. Wheeler, Y. Shen, G. P. Veldes, N. Whitaker, P. G. Kevrekidis et al., Backwardwave propagation and discrete solitons in a left-handed electrical lattice, Phys. Lett. A (2011); 375: 1242. |
[11] | S. Abdoulkary, L. Q. English and A. Mohamadou, Envelope solitons in a left-handed nonlinear transmission line with Josephson junction, Chaos Solitons Fractals (2016); 85: 44 - 50. |
[12] | A. Lai, C. Caloz and T. Itoh, Composite right/ left-handed transmission line metamaterials, IEEE Microwave Mag. (2004); 5:34 - 50. |
[13] | K. Narahara, T. Nakamichi, T. Suemitsu, T. Otsuji and E. Sano, Development of solitons in composite right- and left-handed transmission lines periodically loaded with Schottky varactors, J. Appl. Phys. (2007); 102: 024501. |
[14] | K. Narahara, Harmonic resonance in a composite right-handed and left-handed transmission line periodically loaded with Schottky varactors, Int. J. Circ. Theor. Appl. (2015). doi: 10.1002/cta. 2089. |
[15] | J. Ogasawara and K. Narahara, Short envelope pulse propagation in composite right-and left-handed transmission line with regularly spaced Schottky varactors, IEICE Electron. Express. (2009); 6:1576 – 1581. |
[16] | G. P. Veldes, J. Cuevas, P. G. Kevrekidis and D. J. Frantzeskakis, Quasidiscrete microwave solitons in a split-ring-resonator-based left-handed coplanar waveguide, Phys. Rev. E (2011); 83: 046608. |
[17] | G. P. Veldes, J. Cuevas, P. G. Kevrekidis and D. J. Frantzeskakis, Coupled backward - and forwardpropagating solitons in a composite right-and left-handed trans- mission line, Phys. Rev. E (2013); 88: 013203. |
[18] | S. Abdoulkary, A. D. Aboubakar, M. Aboubakar, A. Mohamadou and L. Kavitha, Solitary wave solutions and modulational instability analysis of the nonlinear Schrödinger equation with higher-order nonlinear terms in the left-handed nonlinear transmission lines, Commun. Nonlinear Sci. Numer. Simulat. (2015); 22: 1288 - 1296. |
[19] | C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean, (Springer, New York, 2009). |
[20] | E. Pelinovsky and C. Kharif (eds.), Extreme Ocean Waves, (Springer, New York, 2008). |
[21] | A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform, (Academic Press, Amsterdam, 2010). |
[22] | D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Optical rogue waves, Nature (2007); 450: 1054 – 1057. |
[23] | C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, Dissipative Rogue Waves Generated by Chaotic Pulse Bunching in a Mode-Locked Laser, Phys. Rev. Lett. (2012); 108: 233901. |
[24] | H. Bailung, S. K. Sharma and Y. Nakamura, Observation of Peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett. (2011); 107: 255005. |
[25] | D. Peregrine, Water waves, nonlinear Schr¨odinger equations and their solutions, Journal of the Australian Mathematical Society Series (1983); 25: 16 – 43. |
[26] | Guo. B. L and Ling. L. M, Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations, Chin. Phys. Lett. (2011); 28: 110202 - 4. |
[27] | E. A. Kuznetsov, Solitons in a parametrically unstable plasma, Sov. Phys.-Dokl. (1977); 22: 575 – 577. |
[28] | Ya. C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math. (1979); 60: 43 - 58. |
[29] | N. Akhmediev, V. Eleonskii, N. Kulagin, Exact first - order solutions of the nonlinear Schrödinger equation, Theoretical and Mathematical Physics (1987); 72: 809 – 818. |
[30] | N. Akhmediev and A. Ankiewicz, Solitons: Non-linear Pulses and Beams (Chapman and Hall, 1997). |
[31] | N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A (2009); 373: 675 – 678. |
[32] | K. B. Dysthe and K. Trulsen, Note on breather type solutions of the NLS as models for freak-waves. Phys. Scripta T (1999); 82: 48 – 52. |
[33] | V. Zakharov and L. Ostrovsky, Modulation instability: The beginning, Physica D. Nonlinear Phenom. (2009); 238: 540 – 548. |
[34] | E. J. R. Kelleher, J. C. Travers, S. V. Popov and J. R. Taylor, Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability. J. Opt. Soc. Am. B (2012); 29: 502 - 512. |
[35] | J. M. Dudley, G. Genty, F. Dias, B. Kibler and N. Akhmediev, Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express (2009); 17, 21497 - 21508. |
[36] | A. I. Dyachenko and V. E. Zakharov, Modulation instability of Stokes wave —– freak wave. JETP Lett. (2005); 81: 255 - 259. |
[37] | A. Chabchoub, N. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett. (2011); 106: 204502. |
[38] | I. Bespalov, V. I. Talanov, Filamentary structure of light beams in nonlinear liquids, JETP Lett. (1966); 3: 307 – 309. |
[39] | Y. Taniuti and H. Washimi, Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma, Phys. Rev. Lett. (1968); 21: 209. |
[40] | Benjamin, T. B.; Feir, J. E. J., The Disintegration of Wa-vetrains on Deep Water., Fluid Mech. (1967); 27: 417 – 430. |
[41] | P. Marqui´e, J. M. Bilbault and M. Remoissenet, Observation of nonlinear localized modes in an electrical lattice, Phys. Rev. E (1995); 51: 6127. |
[42] | V. V. Konotop and M. Salerno, Modulational instability in Bose- Einstein condensates in optical lattices, Phys. Rev. A (2002); 65: 021602(R). |
[43] | B. B. Baizakov, V. V. Konotop and M. Salerno, Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability, J. Phys. B (2002); 35: 5105 – 5119. |
[44] | K. E. Strecker, G. B. Partridge, A. G. Truscott and R. G. Hulet, Formation and propagation of matter-wave soliton trains, Nature (2002); 417: 150 – 153. |
[45] | A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon Press, Oxford, 1995). |
[46] | B. M. Ndi Nnanga, P. Y. Gouadjio Dontsop, B. G. Onana Essama, Mohammed Shabat, David Yemele and Jacques Atangana, Tree-like structures and Freak waves generation induced by quantic nonlinearity and cubic-Raman efect in a nonlinear metamaterial, Opt. Quan. Electron (2020); 52: 356 - 30. |
[47] | E. G. Charalampidis, J. Cuevas - Maraver, D. J. Frantzeskakis and P. G. Kevrekidis, Rogue waves in ultracold bosonic seas, Romanian Reports in Physics (2018); 70, 504 - 25. |
[48] | M. Bertola and A. Tovbis, Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the Tritronqu´ee solution to Painlev´e I, Comm. Pure Appl. Math. (2013); 66, 678 – 752. |
[49] | C. Bayindir, Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field, Phys. Rev. E (2016); 93: 062215. |
[50] | J. M. Dudley, F. Dias, M. Erkintalo and G. Genty, Instabilities, breathers and rogue waves in optics, Nature Photonics (2014); 8: 755 – 764. |
[51] | David D. J. M. Snee and Yi-Ping Ma, Edge Solitons in a Nonlinear Mechanical Topological Insulator, Nonlinear Sciences, (2018) doi: arXiv:1805.03157v1. |
[52] | B. Liu, L. Li, B. A. Malomed, Stability band structure for periodic states in periodic potentials, Applied Numerical Mathematics, (2018); doi:arXiv:1805.07234v1. |
[53] | J. Tan, Z. H. Deng, T. Wu, B. Tang, Propagation and interaction of magnetic solitons in a ferromagnetic thin film with the interfacial Dzyaloshinskii - Moriya interaction, Journal of Magnetism and Magnetic Materials. (2019); 475: 445 - 452. |
[54] | C. Liu, R. E. C. van der Wel, N. Rotenberg, L. Kuipers, T. F. Krauss, A. Di Falco and A. Fratalocchi, Triggering extreme events at the nanoscale in photonic seas, Nature Physics, (2015); 11: 358 – 363. |
[55] | B. G. Onana Essama, J. Atangana, B. Mokhtari, N. Cherkaoui Eddeqaqi and T. C. Kofane, Theoretical model for electromagnetic wave propagation in negative index material induced by cubic-quintic nonlinearities and third-order dispersion effects, Opt. Quant. Electron. (2013); 46: 911 - 924. |
[56] | B. G. Onana Essama, J. Atangana, F. Biya Motto, B. Mokhtari, N. Cherkaoui Eddeqaqi and Timoleon C. Kofane, Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes, J. Mod. Opt. (2014); 61: 1002 - 1008. |
[57] | B. G. Onana Essama, J. Atangana, F. Biya Motto, B. Mokhtari, N. Cherkaoui Eddeqaqi and Timoleon C. Kofane, Optical rogue waves generation in a nonlinear metamaterial, Opt. Commun. (2014); 331: 334 - 347. |
[58] | B. G. Onana Essama, J. Atangana, F. Biya Motto, B. Mokhtari, N. Cherkaoui Eddeqaqi and Timoleon C. Kofane, Rogue wave trains generation in a metamaterial induced by cubic-quintic-nonlinearities and second-order dispersion, Phys. Rev. E (2014); 90: 032911 - 12. |
[59] | J. Atangana, B. G. Onana Essama, F. Biya Motto, B. Mokhtari, N. Cherkaoui Eddeqaqi and Timoleon C. Kofane, Kuznetsov – Ma waves train generation in a left-handed material, J. Mod. Opt. (2014); 62: 392 - 402. |
[60] | P. Y. Gouadjio Dontsop, B. G. Onana Essama, J. M. Dongo, M. Mbou Dedzo, J. Atangana, D. Yemele, T. C. Kofane, Akhmediev–Peregrine rogue waves generation in a composite right/left-handed transmission line, Opt. Quant. Electron. (2016); 48: 59 - 77. |
[61] | J. Atangana, B. M. Ndi Nnanga, B. G. Onana Essama, B. Mokthari, N. Cherkaoui Eddeqaqi, T. C. Kofane, Efficient method of calculation of Raman soliton self - frequency shift in nonlinear optical media, Opt. Commun. (2015); 339: 194 – 208. |
[62] | K. Fukushima, M. Wadati and Y. Narahara, Envelope soliton in a new nonlinear transmission line, J. Phys. Soc. Jpn. (1980); 49: 1593 - 1597. |
[63] | A. B. Togueu Motcheyo, J. D. Tchinang Tchameu, S. I. Fewo, C. Tchawoua, T. C. Kofane, Chameleon’s behavior of modulable nonlinear electrical transmission line, Commun. Nonlinear Sci. Numer. Simulat. (2017); 53: 22 - 30. |
[64] | V. Shrira and V. Geogjaev, What makes the Peregrine soliton so special as a prototype of freak waves?, Journal of Engineering Mathematics (2010); 67: 11 – 22. |
[65] | B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. Dudley, The Peregrine soliton in nonlinear fibre optics, Nature Physics, (2010); 6: 790 – 795. |
[66] | N. Akhmediev, V. Eleonskii, N. Kulagin, Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions, Soviet Physics JETP (1985); 62: 894 – 899. |
[67] | N. Akhmediev, V. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation, Theoretical and Mathematical Physics (1986); 69: 1089 – 1093. |
[68] | M. Onorato, S. Residori, U. Bortolozzo, A. Montina and F. T. Arecchi, Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep. (2013); 528: 47 - 89. |
[69] | P. Tchofo Dinda, K. Nakkeeran and A. Labruyere, Suppression of soliton self-frequency shift by upshifted filtering, Opt. Lett. (2002); 27: 382 – 384. |
[70] | P. Tchofo Dinda, A. B. Moubissi and K. Nakkeeran, A collective variable approach for dispersion managed solitons, J. Phys. A: Math. Gen. (2001); 34: 103 - 110. |
[71] | S. Fewo, H. Moussambi and T. C. Kofane, Analysis of non-paraxial solitons using collective variable approach, Phys. Scr. (2011); 84: 035002. |
[72] | S. Shwetanshumala and A. Biswas, Femtosecond pulse propagaton in optical fibers under higher order effects: A collective variable approach, J. Theor. Phys. (2008); 47: 1699 - 1708. |
[73] | Shwetanshumala, Temporal solitons in nonlinear media modeled by modified complex Ginzburg Landau Equation under collective variable approach S. J. Theor. Phys. (2009); 48: 1122 - 1131. |
[74] | R. Hirota and K. Suzuki, Studies on lattice solitons by using electrical networks, J. Phys. Soc. Jpn. (1970); 28: 1366 - 1367. |
[75] | R. Hirota and K. Suzuki, Theoretical and experimental studies of lattice solitons in nonlinear lumpednetworks, Proc. IEEE (1973); 61: 1483 – 1491. |
[76] | G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2nd ed. 1995). |
[77] | J. Atangana, B. G. Onana Essama, B. Mokhtari and T. C. Kofane, Cubic-quintic saturable nonlinearity effects on a light pulse strongly distorted by the fourth-order dispersion. J. Mod. Opt. (2013); 60: 292 - 300. |
[78] | B. B. Baizakov, A. Bouketir, S. M. Al-Marzoug, H. Bahlouli, Effect of quintic nonlinearity on modulation instability in coupled nonlinear Schrödinger systems, Nonlinear Sciences, (2018); DOI:10.1016/j.ijleo.2018.11.092. |
[79] | M. Lobet, M. Lard, M. Sarrazin, O. Deparis and L. Henrard, Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption, Optics Express (2014); 22: 12678 - 12690. |
[80] | R. A. Van Gorder, Andrew L. Krause, and James A. Kwiecinski, Amplitude death criteria for coupled complex Ginzburg-Landau systems, Nonlinear Sciences, (2019); doi: arXiv:1803.02147. |
[81] | A. D. Boardman, A. Alberucci, G. Assanto, V. V. Grimalsky, B. Kibler, J. McNiff, I. S. Nefedov, Y. G. Rapoport and C. A. Valagiannopoulos, Waves in hyperbolic and double negative metamaterials including rogues and solitons, Nanotechnology (2017); 28: 444001. |
[82] | N. Akhmediev et al., Roadmap on optical rogue waves and extreme events, J. Opt. (2016); 18: 063001 - 38. |
[83] | J. M. Soto-Crespo, P. Grelu and N. Akhmediev, Dissipative rogue waves: Extreme pulses generated by passively mode-locked lasers, Phys. Rev. E (2011); 84: 016604. |
[84] | Nikolay K. Vitanov, Amin Chabchoub, Norbert Hoffmann, Deep-Water Waves: On The Nonlinear Schrödinger Equation And Its Solutions, Journal of Theoretical and Applied Mechanics, (2013); 43: 43 – 54. |
[85] | Zakharov, V., Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep Fluid, J. Appl. Mech. Tech. Phys. (1968); 9: 190 – 194. |
[86] | D. J. Kedziora, A. Ankiewicz and N. Akhmediev, Triangular rogue wave cascades, Phys. Rev. E (2012); 86: 056602 - 9. |
[87] | R. H. J. Grimshaw and A. Tovbis, Rogue waves: Analytical predictions, Proc. Roy. Soc. A Math. Phys. Eng. Sci. (2013); 469: 2157 - 12. |
[88] | L. Wei, Q. De-Qin and H. Jing-Song., Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrödinger Equation, Commun. Theor. Phys. (2015); 63: 525 – 534. |
[89] | A. Ankiewicz, A. P. Bassom, P. A. Clarkson and E. Dowie, Conservation laws and integral relations for the Boussinesq equation, (2017);doi: arXiv:1611.09505v3 [nlin.SI]. |
[90] | Alexander K. Popov and Vladimir M. Shalaev, Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. (2006); 31: 2169 - 2171. |
[91] | N. M. Litchinitser and V. M. Shalaev, Loss as a route to transparency, Nat. Photonics, (2009); 3: 75 – 79. |
[92] | B. G. Onana Essama, S. Ndjakomo Essiane, F. Biya-Motto, B. M. N. Nnanga, M. Shabat, and J. Atangana: “Dynamical Evolution of Sasa–Satsuma Rogue Waves, Breather Solutions, and New Special Wave Phenomena in a Nonlinear Metamaterial”. Phys. Stat. Sol. B. (2020); 2000316 – 24. DOI: 10.1002/pssb.202000316 |
[93] | B. M. N. Nnanga, P. Y. G. Dontsop, B. G. Onana Essama, M. Shabat, D. Yemele, J. Atangana: “Tree‑like structures and Freak waves generation induced by quintic‑nonlinearity and cubic‑Raman effect in a nonlinear metamaterial”. Opt. Quant. Electron. (2020); 52: 356 – 30. |
APA Style
Bedel Giscard Onana Essama, Salome Ndjakomo Essiane, Frederic Biya – Motto, Mohammed Shabat, Jacques Atangana. (2020). Triangular Rogue Waves and Multi- Wave Trains Generation in a Chameleon Electrical Transmission Line. American Journal of Optics and Photonics, 8(3), 61-73. https://doi.org/10.11648/j.ajop.20200803.12
ACS Style
Bedel Giscard Onana Essama; Salome Ndjakomo Essiane; Frederic Biya – Motto; Mohammed Shabat; Jacques Atangana. Triangular Rogue Waves and Multi- Wave Trains Generation in a Chameleon Electrical Transmission Line. Am. J. Opt. Photonics 2020, 8(3), 61-73. doi: 10.11648/j.ajop.20200803.12
AMA Style
Bedel Giscard Onana Essama, Salome Ndjakomo Essiane, Frederic Biya – Motto, Mohammed Shabat, Jacques Atangana. Triangular Rogue Waves and Multi- Wave Trains Generation in a Chameleon Electrical Transmission Line. Am J Opt Photonics. 2020;8(3):61-73. doi: 10.11648/j.ajop.20200803.12
@article{10.11648/j.ajop.20200803.12, author = {Bedel Giscard Onana Essama and Salome Ndjakomo Essiane and Frederic Biya – Motto and Mohammed Shabat and Jacques Atangana}, title = {Triangular Rogue Waves and Multi- Wave Trains Generation in a Chameleon Electrical Transmission Line}, journal = {American Journal of Optics and Photonics}, volume = {8}, number = {3}, pages = {61-73}, doi = {10.11648/j.ajop.20200803.12}, url = {https://doi.org/10.11648/j.ajop.20200803.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20200803.12}, abstract = {In this work, we present a particular nonlinear transmission line called chameleon nonlinear transmission line. In fact, the chameleon’s behavior is related to the fact that without changing its appearance, the line can exhibit alternatively purely right - or left - handed behavior. This transmission line is different to the composite one. So, the goal of this work is to demonstrate that this special line can support the propagation of soliton light pulse subjected to quintic – phase modulation, improve the freak wave’s mechanism of generation and verify the chameleon’s behavior of the line. Consequently, we employ collective coordinate’s theory in order to give a great characterization of the light pulse. Then, we introduce an upgraded function called “type II Ansatz function” with eight collective coordinates compared to the conventional Gaussian Ansatz with six collective coordinates. We show that the two additional coordinates will allow us to improve the technique of measurement of internal excitation leading to the generation of rogue events. Moreover, these coordinates will give supplemental details on frequency shift and chirp distortions during the generation of specific rogue events such as “wall of waves”, tree structures, multi - wave trains, Kuznetsov - Ma breathers, Akhmediev breathers, Peregrine solitons and triangular rogue waves. The stability of the soliton light pulse will be also investigated at specific frequency ranges.}, year = {2020} }
TY - JOUR T1 - Triangular Rogue Waves and Multi- Wave Trains Generation in a Chameleon Electrical Transmission Line AU - Bedel Giscard Onana Essama AU - Salome Ndjakomo Essiane AU - Frederic Biya – Motto AU - Mohammed Shabat AU - Jacques Atangana Y1 - 2020/11/23 PY - 2020 N1 - https://doi.org/10.11648/j.ajop.20200803.12 DO - 10.11648/j.ajop.20200803.12 T2 - American Journal of Optics and Photonics JF - American Journal of Optics and Photonics JO - American Journal of Optics and Photonics SP - 61 EP - 73 PB - Science Publishing Group SN - 2330-8494 UR - https://doi.org/10.11648/j.ajop.20200803.12 AB - In this work, we present a particular nonlinear transmission line called chameleon nonlinear transmission line. In fact, the chameleon’s behavior is related to the fact that without changing its appearance, the line can exhibit alternatively purely right - or left - handed behavior. This transmission line is different to the composite one. So, the goal of this work is to demonstrate that this special line can support the propagation of soliton light pulse subjected to quintic – phase modulation, improve the freak wave’s mechanism of generation and verify the chameleon’s behavior of the line. Consequently, we employ collective coordinate’s theory in order to give a great characterization of the light pulse. Then, we introduce an upgraded function called “type II Ansatz function” with eight collective coordinates compared to the conventional Gaussian Ansatz with six collective coordinates. We show that the two additional coordinates will allow us to improve the technique of measurement of internal excitation leading to the generation of rogue events. Moreover, these coordinates will give supplemental details on frequency shift and chirp distortions during the generation of specific rogue events such as “wall of waves”, tree structures, multi - wave trains, Kuznetsov - Ma breathers, Akhmediev breathers, Peregrine solitons and triangular rogue waves. The stability of the soliton light pulse will be also investigated at specific frequency ranges. VL - 8 IS - 3 ER -