| Peer-Reviewed

Mechanism, of Biophysicochemical Interactions and Cellular Uptake at the Nano-Bio Interface: A Review

Received: 13 September 2017     Accepted: 25 September 2017     Published: 18 December 2017
Views:       Downloads:
Abstract

Although numerous studies have investigated the interaction between nanoparticles and biological systems (proteins, cells, tissues, membrane etc.), and the growing interests of nanotoxicity of these engineered nanoparticles, much remains to be investigated. First, there are various factors to be explored, such as the physical or chemical properties of materials, different cell lines, and the systematic study of specific materials. Secondly, architectural structure (shape) conditions of NPs have not been well investigated and undestood. Third, the variations in cell line result in different cell uptake, toxicity, or transportation in the same materials, but systematic studies of this phenomenon are scanty. Fourth, the nanotoxicity issue and the accumulation of non-degradable materials relating to biosafety are yet to be understood. Fifth, the transformation of NMs’ surface chemistry in living creatures is too complicated to investigate. In this article, we review the biophysicochemical mechanisms of the various interactions between nanomaterials and biological systems (proteins, cells, membrane). With the rapid increase in studies related to nanotechnology, investigations on nanomaterials can be more beneficial than others because of their size. A comprehensive understanding of nano-bio interactions can serve as a foundation for future biomedical applications.

Published in European Journal of Biophysics (Volume 5, Issue 4)
DOI 10.11648/j.ejb.20170504.12
Page(s) 66-78
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Nanoparticles, Cellular Uptake, Toxicology, Polymer

References
[1] N. J. Hao, L. L. Li, Q. Zhang, X. L. Huang, X. W. Meng, Y. Q. Zhang, D. Chen, F. Q. Tang and L. F. Li, Shape Control of Mesoporous Silica Nanomaterials Templated with Dual Cationic Surfactants and Their Antibacterial Activities. Microporous Mesoporous Mater., 2012, 162, 14-23.
[2] X. L. Huang, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, D. Chen and F. Q. Tang. The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. ACS Nano, 2011, 5, 5390-5399.
[3] X. L. Huang, X. Teng, D. Chen, F. Q. Tang and J. Q. He. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31, 438-448.
[4] S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier and J. M. DeSimoneh. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 11613-11618.
[5] S. Muro, C. Garnacho, J. A. Champion, J. Leferovich, C. Gajewski, E. H. Schuchman, S. Mitragotri and V. R. Muzykantov. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther., 2008, 16, 1450-1458.
[6] L. Florez, C. Herrmann, J. M. Cramer, C. P. Hauser, K. Koynov, K. Landfester, D. Crespy and V. Mailander. Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces. Chem Commun (Camb). 2015; 51(2): 273–275.
[7] J. A. Champion and S. Mitragotri. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 4930-4934.
[8] P. Decuzzi, R. Pasqualini, W. Arap and M. Ferrari. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res., 2009, 26, 235-243.
[9] P. Decuzzi and M. Ferrari. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials, 2006, 27, 5307-5314.
[10] P. Decuzzi, B. Godin, T. Tanaka, S. Y. Lee, C. Chiappini, X. Liu and M. Ferrari. Size and shape effects in the biodistribution of intravascularly injected particles. J. Controlled Release, 2010, 141, 320-327.
[11] R. S. Liu, Controlled Nanofabrication: Advances and Applications, Pan Stanford Publishing, Singapore, 2013.
[12] E. C. Cho, J. W. Xie, P. A. Wurm and Y. N. Xia. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett., 2009, 9, 1080-1084.
[13] C. Wilhelm, C. Billotey, J. Roger, J. N. Pons, J. C. Bacri and F. Gazeau, Biomaterials, 2003, 24, 1001-1011.
[14] A. L. Martin, L. M. Bernas, B. K. Rutt, P. J. Foster and E. R. Gillies. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjugate Chem., 2008, 19, 2375-2384.
[15] T. D. Krauss (2009) Biosensors: Nanotubes light up cells. Nat Nanotechnol 4: 85–86.
[16] R. R. Arvizo, O. R. Miranda, M. A. Thompson, C. M. Pabelick, R. Bhattacharya J. D. Robertson, V. M. Rotello, Y. S. Prakash and P. Mukherjee. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett., 2010, 10, 2543-2548.
[17] J. P. Ryman-Rasmussen, J. E. Riviere and N. A. Monteiro-Riviere. Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett., 2007, 7, 1344-1348.
[18] O. Harush-Frenkel, N. Debotton, S. Benita and Y. Altschuler. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun., 2007, 353, 26-32.
[19] T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J. I. Zink and A. E. Nel. Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 2009, 3, 3273-3286.
[20] A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova and M. Thompson. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 2009, 8, 543-557.
[21] C. C. Ge, J. F. Du, L. N. Zhao, L. M. Wang, Y. Liu, D. H. Li, Y. L. Yang, R. H. Zhou, Y. L. Zhao, Z. F. Chai and C. Y. Chen, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 16968-16973.
[22] S. J. Tan, N. R. Jana, S. J. Gao, P. K. Patra and J. Y. Ying. Surface-Ligand-Dependent Cellular Interaction, Subcellular Localization, and Cytotoxicity of Polymer-Coated Quantum Dots. Chem. Mater., 2010, 22, 2239-2247.
[23] B. Naim, D. Zbaida, S. Dagan, R. Kapon and Z. Reich. Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. EMBO J., 2009, 28, 2697-2705.
[24] E. R. Zubarev, J. Xu, A. Sayyad and J. D. Gibson. Amphiphilicity-Driven Organization of Nanoparticles into Discrete Assemblies. J. Am. Chem. Soc., 2006, 128, 15098-15099.
[25] H. W. Duan, M. Kuang, D. Y. Wang, D. G. Kurth and H. Mohwald. Novel triblock copolymers to modify the nanoiron surface chemistry. Chem. Int. Ed., 2005, 44, 1717-1720.
[26] M. T. Ortega, J. E. Riviere, K. Choi, N. A. Monteiro-Riviere Bio corona formation on gold nanoparticles modulates human proximal tubule kidney cell uptake, cytotoxicity and gene expression. Accepted date: 13 April 2017.
[27] Nouf N. Mahmoud, Khaled M. Al-Qaoud, Amal G. Al-Bakri, Alaaldin M. Alkilany, Enam A. Khalil Colloidal Stability of Gold Nanorod solution Upon Exposure to Excised Human Skin: Effect of Surface Chemistry and Protein Adsorption Accepted date: 23-2-2016.
[28] Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Particle and Fibre Toxicology, 2016, DOI: 10.1186/s12989-016-0113-0
[29] Isabella Radauer-Preiml, Ancuela Andosch, Thomas Hawranek, Ursula Luetz-Meindl, Markus Wiederstein, Jutta Horejs Hoeck, Martin Himly, Matthew Boyles and Albert Duschl. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012, 41(7): 2780-99.
[30] F. Mousseau, R. Le Borgne, E. Seyrek, and J.-F. Berret Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina. Langmuir, 2015, 31 (26), pp 7346–7354.
[31] T. Xia, M. Kovochich, M. Liong, L. Ma¨ dler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink, and A. E. Nel Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. American Chemical Society, 2008, 2(10): 2121-2134.
[32] S. Stankic, S. Suman, F. Haque, and J. Vidic. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology, 2016, 14(73): 1-20.
[33] X. Jiang, S. Weise, M. Hafner, C. Röcker, F. Zhang, W. J. Parak, and G. U. Nienhaus. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface. 2010, 7 (Suppl 1): S5-S13.
[34] P. Maffre, K. Nienhaus, F. Amin, W. J. Parak, and G. U. Nienhaus. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol. 2011, 2: 374-383.
[35] I. Lynch, A. Salvati, and K. A. Dawson. Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol. 2009, 4: 546-547. 10.1038/nnano.2009.248
[36] A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, “Understanding biophysicochemical interactions at the nano-bio interface.,” Nature Materials, vol. 8, no. 7, pp. 543–57, Jul. 2009.
[37] S. O. Nielsen, B. Ensing, V. Ortiz, P. B. Moore, and M. L. Klein, “Lipid bilayer perturbations around a transmembrane nanotube: a coarse grain molecular dynamics study.,” Biophysical Journal, vol. 88, no. 6, pp. 3822–8, Jun. 2005.
[38] S. D. Conner and S. L. Schmid, “Regulated portals of entry into the cell.,” Nature, vol. 422, no. 6927, pp. 37–44, Mar. 2003.
[39] A. Verma, O. Uzun, Y. Hu, Y. Hu, H.-S. Han, N. Watson, S. Chen, D. J. Irvine, and F. Stellacci, “Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles.,” Nature Materials, vol. 7, no. 7, pp. 588–95, Jul. 2008.
[40] N. B. Shah, G. M. Vercellotti, J. G. White, A. Fegan, C. R. Wagner, and J. C. Bischof, “Blood-nanoparticle interactions and in vivo biodistribution: impact of surface peg and ligand properties.,” Molecular pharmaceutics, 2012, 9(8): 2146-2155.
[41] A. V. Bychkova, O. N. Sorokina, A. L. Kovarskii, V. B. Leonova, and M. A. Rozenfel’d. “Interaction between blood plasma proteins and magnetite nanoparticles,” Colloid Journal, vol. 72, no. 5, pp. 696–702, Oct. 2010.
[42] J. Deng, G. Mortimer, T. Schiller, A. Musumeci, D. Martin, and R. F. Minchin, “Differential plasma protein binding to metal oxide nanoparticles.,” Nanotechnology, 2009, 20(45), p. 455101.
[43] A. Kapralov, W. H. Feng, A. Amoscato, N. Yanamala, K. Balasubramanian, D. E. Winnica, E. R. Kisin, G. P. Kotchey, P. Gou, L. J. Sparvero, P. Ray, R. K. Mallampalli, J. Klein-Seetharaman, B. Fadeel, A. Star, A. Shvedova, and V. E. Kagan, “Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration.,” ACS Nano, 2012, (6): 4147–4156.
[44] B. C. Tang, M. Dawson, S. K. Lai, Y.-Y. Wang, J. S. Suk, M. Yang, P. Zeitlin, M. P. Boyle, J. Fu, and J. Hanes, “Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.,” Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(46): 19268–19273.
[45] R. D. Handy, R. Owen, and E. Valsami-Jones. The ecotoxicology of nanoparticles and nanomaterials: current status, nowledge gaps, challenges, and future needs. Ecotoxicology, 2008 (17): 315–325.
[46] A. Bourgeault, V. Legros, F. Gonnet, R. Daniel, A. Paquirissamy, C. Bénatar, and S. Pin. Interaction of TiO2 nanoparticles with proteins from aquatic organisms: the case of gill mucus from blue mussel. Environmental Science and Pollution Research, 2017, 24(15): 1-10.
[47] L. Canesi, C. Ciacci, R. Fabbri, T. Balbi, A. Salis, G. Damonte, and E. Bergami. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. Environmental research, 2016, 150, 73-81.
[48] A. Boddupalli, R. Tiwari, A. Sharma, S. Singh, R. Prasanna, and L. Nain. Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia microbiologica, 2017, 62(3), 253-262.
[49] Y. Yue, X. Li, L. Sigg, M. J. Suter, S. Pillai, R. Behra, and K. Schirmer. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. Journal of nanobiotechnology, 2017, 15(1), 16.
[50] E. Tegou, M. Magana, A. E. Katsogridaki, A. Ioannidis, V. Raptis, S. Jordan, and G. P. Tegos. Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials, 2016, 89: 38-55.
[51] B. Bukowski and N. A. Deskins. The interactions between TiO 2 and graphene with surface inhomogeneity determined using density functional theory. Physical Chemistry Chemical Physics, 2015, 17(44), 29734-29746.
[52] D. G. Goodwin Jr, K. M. Marsh, I. B. Sosa, J. B. Payne, J. M. Gorham, E. J. Bouwer, and D. H. Fairbrother. Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes. Environmental science & technology, 2015, 49(9), 5484-5492.
[53] V. Z. Feng, I. L. Gunsolus, T. A. Qiu, K. R. Hurley, L. H. Nyberg, H. Frew, K. P. Johnson, A. M. Vartanian, L. M. Jacob, S. E. Lohse, M. D. Torelli, R. J. Hamers, C. J. Murphy, and C. L. Haynes. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria, Chemical Science, 2015, Advance article, doi: 10.1039/C5SC00792E
[54] V. N. Moos, P. Bowen, and V. I. Slaveykova. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environmental Science: Nano, 2014, 1(3): 214-232.
[55] H. Xu, J. Pan, H. Zhang, and Yang, L. Interactions of metal oxide nanoparticles with extracellular polymeric substances (EPS) of algal aggregates in an eutrophic ecosystem. Ecological Engineering, 2016, 94: 464-470.
[56] J. Zhao, X. Cao, X. Liu, Z. Wang, C. Zhang, J. C. White, and B. Xing. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity. Nanotoxicology, 2016, 10(9), 1297-1305.
[57] L. J. Hazeem, M. Bououdina, S. Rashdan, L. Brunet, C. Slomianny, and R. Boukherroub. Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environmental Science and Pollution Research, 2016, 23(3), 2821-2830.
[58] A. S. Adeleye, and A. A. Keller. Interactions between Algal Extracellular Polymeric Substances and Commercial TiO2 Nanoparticles in Aqueous Media. Environmental Science & Technology, 2016, 50(22), 12258-12265.
[59] Y. Xie, H. Dong, G. Zeng, L. Tang, Z. Jiang, C. Zhang, and Y. Zhang. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Journal of Hazardous Materials, 2017, 321, 390-407.
[60] G. Darabdhara, P. K. Boruah, N. Hussain, P. Borthakur, B. Sharma, P. Sengupta, and M. R. Das. Magnetic nanoparticles towards efficient adsorption of gram positive and gram negative bacteria: An investigation of adsorption parameters and interaction mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 161-170.
[61] X. Ding, P. Yuan, N. Gao, H. Zhu, Y. Y. Yang, and Q. H. Xu. Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 2017, 13(1), 297-305.
[62] J. J. Ortega-Calvo, C. Jimenez-Sanchez, P. Pratarolo, H. Pullin, T. B. Scott, and I. P. Thompson. Tactic response of bacteria to zero-valent iron nanoparticles. Environmental Pollution, 2016, 213, 438-445.
[63] S. Ma, K. Zhou, K. Yang, and D. Lin. Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH. Environmental science & techn 2014, 2: 932-939.
[64] S. Hong, P. R. Leroueil, E. K. Janus, J. L. Peters, M.-M. Kober, M. T. Islam, B. G. Orr, J. R. Baker and M. M. Banaszak Holl, Bioconjugate Chem., 2006, 17, 728–734.
[65] Y. Li and N. Gu, J. Phys. Chem. B, 2010, 114, 2749–2754. J. Lin, H. Zhang, Z. Chen and Y. Zheng, ACS Nano, 2010, 4, 5421–5429.
[66] R. R. Arvizo, O. R. Miranda, R. Bhattacharya, M. A. Thompson, J. D. Robertson, V. M. Rotello, C. M. Pabelick, Y. S. Prakash and P. Mukherjee, Nano Lett., 2010, 10, 2543–2548.
[67] R. Bhattacharya, C. R. Patra, A. Earl, S. Wang, A. Katarya, L. Lu, J. N. Kizhakkedathu, M. J. Yaszemski, P. R. Greipp, D. Mukhopadhyay and P. Mukherjee, Nanomed.: Nanotechnol., Biol. Med., 2007, 3, 224–238.
[68] M. Laurencin, T. Georgelin, B. Malezieux, J.-M. Siaugue and C. Menager, Langmuir, 2010, 26, 16025–16030.
[69] T. Tanaka and M. Yamazaki. Membrane fusion of giant unilamellar vesicles of neutral phospholipid membranes induces by La3+. Langmuir, 2004, 20(13), 5160–5164.
[70] B. Wang, L. Zhang, S. C. Bae and S. Granick, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 18171–18175.
[71] Y. Roiter, M. Ornatska, D. R. Heine, A. R. Rammohan, S. Minko and J. Balakrishnan, Nano Lett., 2008, 8, 941–944.
[72] M. R. R. de Planque, S. Aghdaei, T. Roose and H. Morgan, ACS Nano, 2011, 5, 3599–3606.
[73] R. Lipowsky and H. G. Dobereiner, Europhys. Lett., 1998, 43, 219–225.
[74] M. Breidenich, R. R. Netz and R. Lipowsky, Mol. Phys., 2005, 103, 3169–3183.
[75] H. Noguchi and M. Takasu, Biophys. J., 2002, 83, 299–308.
[76] A. Verma and F. Stellacci, Small, 2010, 6(1), 12–21. 1 R. Brayner, Nanotoday, 2008, 3, 48–55.
[77] Z. Yang, Z. W. Liu, R. P. Allaker, P. Reip, J. Oxford, Z. Ahmad and G. Ren, J. R. Soc. Interface, 2010, 7, S411–S422.
[78] N. Lewinski, V. Colvin and R. Drezek, Small, 2008, 4, 26–49
[79] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau and W. Jahnen-Dechent, Small, 2007, 3, 1941–1949.
[80] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau and W. Jahnen-Dechent, Size-dependent cytotoxicity of Gold nanoparticles. DOI: 10.1002/smll.200700378 2007, 3, 1941–1949.
[81] X. L. Huang, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, D. Chen and F. Q. Tang. The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. ACS Nano, 2011, 5, 5390-5399.
[82] X. L. Huang, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, D. Chen and F. Q. Tang. The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. ACS Nano, 2011, 5, 5390-5399.
[83] X. L. Huang, X. Teng, D. Chen, F. Q. Tang and J. Q. He. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31, 438-448.
[84] S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier and J. M. DeSimoneh. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 11613-11618.
[85] S. Muro, C. Garnacho, J. A. Champion, J. Leferovich, C. Gajewski, E. H. Schuchman, S. Mitragotri and V. R. Muzykantov. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther., 2008, 16, 1450-1458.
[86] L. Florez, C. Herrmann, J. M. Cramer, C. P. Hauser, K. Koynov, K. Landfester, D. Crespy and V. Mailander. Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces. Chem Commun (Camb). 2015; 51(2): 273–275.
[87] J. A. Champion and S. Mitragotri. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 4930-4934.
[88] B. Naim, D. Zbaida, S. Dagan, R. Kapon and Z. Reich, EMBO J., 2009, 28, 2697-2705.
[89] E. R. Zubarev, J. Xu, A. Sayyad and J. D. Gibson, J. Am. Chem. Soc., 2006, 128, 15098-15099.
[90] H. W. Duan, M. Kuang, D. Y. Wang, D. G. Kurth and H. Mohwald, Angew. Chem. Int. Ed., 2005, 44, 1717-1720.
[91] H. Wang, Y. Zhao, Y. Wu, Y. L. Hu, K. H. Nan, G. J. Nie and H. Chen, Biomaterials, 2011, 32, 8281-8290.
[92] Q. H. Miao, D. X. Xu, Z. Wang, L. Xu, T. W. Wang, Y. Wu, D. B. Lovejoy, D. S. Kalinowski, D. R. Richardson, G. J. Nie and Y. L. Zhao, Biomaterials, 2010, 31, 7364-7375.
[93] A. Don Porto Carero, P. Hoet, L. Verschaeve, G. Schoeters and B. Nemery, Environ. Mol. Mutagen., 2001, 37, 155-163.
[94] L. Braydich-Stolle, S. Hussain, J. J. Schlager and M. C. Hofmann, Toxicol. Sci., 2005, 88, 412-419.
[95] Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano and A. S. Biris, ACS nano, 2010, 4, 3181-3186.
[96] S. Hirano, Y. Fujitani, A. Furuyama and S. Kanno, Toxicol. Appl. Pharmacol., 2010, 249, 8-15.
[97] B. Zhong, W. Whong and T. Ong, Mutat. Res. Gen. Tox. En., 1997, 393, 181-187.
[98] L. Meng, R. Chen, A. Jiang, L. Wang, P. Wang, C. Li, R. Bai, Y. Zhao, H. Autrup and C. Chen, Small, 2012, ASAP. DOI: 10.1002/smll.201201388.
[99] N. W. S. Kam, T. C. Jessop, P. A. Wender and H. Dai, J. Am. Chem. Soc., 2004, 126, 6850-6851.
[100] L. W. Zhang, L. Zeng, A. R. Barron and N. A. Monteiro-Riviere, Int. J. Toxicol., 2007, 26, 103-113.
[101] A. A. Shvedova, A. Pietroiusti, B. Fadeel and V. E. Kagan, Toxicol. Appl. Pharmacol., 2012, 261, 121-133.
[102] C. C. Ge, Y. Li, J. J. Yin, Y. Liu, L. M. Wang, Y. L. Zhao and C. Y. Chen, Npg Asia Mater., 2012, 4, e32. L. Ming, R. Chen, L. M. Wang, P. Wang, C. Z. Li, R. Bai, Y. L. Zhao, H. Autrup and C. Y. Chen, small, ASAP. DOI: 10.1002/smll.201201388.
[103] I. Fenoglio, M. Tomatis, D. Lisbon, A. Fenoseca, J. B. Nagy, and B. Fubini. Reactivity of carbon nanotubes: free radical generation or scavenging activity. Free Radical Bio. Med., 2006, 40, 1227-1233.
[104] L. Meng, A. Jiang, R. Chen, C. Li, L. Wang, Y. Qu, P. Wang, Y. Zhao and C. Chen, Toxicology, 2012, ASAP. DOI: http://dx.doi.org/10.1016/j.tox.2012.11.011.
[105] S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y. S. Lin, C. L. Haynes. Annu Rev Anal Chem. 2012; 5: 181–205. [PubMed]
[106] M. A. Maurer-Jones, I. L. Gunsolus, C. J. Murphy, and C. L. Haynes. Toxicity of Engineered Nanoparticles in the Environment. Analytical Chemistry, 2013, 85(6), 3036–3049.
Cite This Article
  • APA Style

    Louis Hitler, Maraga Tonny Nyong’a, Israt Ali, Ahmed Sadia, Kibaba Paul Waliaula, et al. (2017). Mechanism, of Biophysicochemical Interactions and Cellular Uptake at the Nano-Bio Interface: A Review. European Journal of Biophysics, 5(4), 66-78. https://doi.org/10.11648/j.ejb.20170504.12

    Copy | Download

    ACS Style

    Louis Hitler; Maraga Tonny Nyong’a; Israt Ali; Ahmed Sadia; Kibaba Paul Waliaula, et al. Mechanism, of Biophysicochemical Interactions and Cellular Uptake at the Nano-Bio Interface: A Review. Eur. J. Biophys. 2017, 5(4), 66-78. doi: 10.11648/j.ejb.20170504.12

    Copy | Download

    AMA Style

    Louis Hitler, Maraga Tonny Nyong’a, Israt Ali, Ahmed Sadia, Kibaba Paul Waliaula, et al. Mechanism, of Biophysicochemical Interactions and Cellular Uptake at the Nano-Bio Interface: A Review. Eur J Biophys. 2017;5(4):66-78. doi: 10.11648/j.ejb.20170504.12

    Copy | Download

  • @article{10.11648/j.ejb.20170504.12,
      author = {Louis Hitler and Maraga Tonny Nyong’a and Israt Ali and Ahmed Sadia and Kibaba Paul Waliaula and Okoth Joseph Ogalo and Akakuru Ozioma Udochukwu},
      title = {Mechanism, of Biophysicochemical Interactions and Cellular Uptake at the Nano-Bio Interface: A Review},
      journal = {European Journal of Biophysics},
      volume = {5},
      number = {4},
      pages = {66-78},
      doi = {10.11648/j.ejb.20170504.12},
      url = {https://doi.org/10.11648/j.ejb.20170504.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ejb.20170504.12},
      abstract = {Although numerous studies have investigated the interaction between nanoparticles and biological systems (proteins, cells, tissues, membrane etc.), and the growing interests of nanotoxicity of these engineered nanoparticles, much remains to be investigated. First, there are various factors to be explored, such as the physical or chemical properties of materials, different cell lines, and the systematic study of specific materials. Secondly, architectural structure (shape) conditions of NPs have not been well investigated and undestood. Third, the variations in cell line result in different cell uptake, toxicity, or transportation in the same materials, but systematic studies of this phenomenon are scanty. Fourth, the nanotoxicity issue and the accumulation of non-degradable materials relating to biosafety are yet to be understood. Fifth, the transformation of NMs’ surface chemistry in living creatures is too complicated to investigate. In this article, we review the biophysicochemical mechanisms of the various interactions between nanomaterials and biological systems (proteins, cells, membrane). With the rapid increase in studies related to nanotechnology, investigations on nanomaterials can be more beneficial than others because of their size. A comprehensive understanding of nano-bio interactions can serve as a foundation for future biomedical applications.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Mechanism, of Biophysicochemical Interactions and Cellular Uptake at the Nano-Bio Interface: A Review
    AU  - Louis Hitler
    AU  - Maraga Tonny Nyong’a
    AU  - Israt Ali
    AU  - Ahmed Sadia
    AU  - Kibaba Paul Waliaula
    AU  - Okoth Joseph Ogalo
    AU  - Akakuru Ozioma Udochukwu
    Y1  - 2017/12/18
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ejb.20170504.12
    DO  - 10.11648/j.ejb.20170504.12
    T2  - European Journal of Biophysics
    JF  - European Journal of Biophysics
    JO  - European Journal of Biophysics
    SP  - 66
    EP  - 78
    PB  - Science Publishing Group
    SN  - 2329-1737
    UR  - https://doi.org/10.11648/j.ejb.20170504.12
    AB  - Although numerous studies have investigated the interaction between nanoparticles and biological systems (proteins, cells, tissues, membrane etc.), and the growing interests of nanotoxicity of these engineered nanoparticles, much remains to be investigated. First, there are various factors to be explored, such as the physical or chemical properties of materials, different cell lines, and the systematic study of specific materials. Secondly, architectural structure (shape) conditions of NPs have not been well investigated and undestood. Third, the variations in cell line result in different cell uptake, toxicity, or transportation in the same materials, but systematic studies of this phenomenon are scanty. Fourth, the nanotoxicity issue and the accumulation of non-degradable materials relating to biosafety are yet to be understood. Fifth, the transformation of NMs’ surface chemistry in living creatures is too complicated to investigate. In this article, we review the biophysicochemical mechanisms of the various interactions between nanomaterials and biological systems (proteins, cells, membrane). With the rapid increase in studies related to nanotechnology, investigations on nanomaterials can be more beneficial than others because of their size. A comprehensive understanding of nano-bio interactions can serve as a foundation for future biomedical applications.
    VL  - 5
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China

  • Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China

  • Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China

  • Institute of Chemistry, University of Chinese Academy of Sciences, Beijing, China

  • Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

  • Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

  • Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China

  • Sections