Coronavirus (CoV), which causes animal diseases, has become a human health concern. Prior to 2003, CoV caused respiratory diseases and enteric disorders, but after 2003, CoV caused three acute respiratory syndromes, resulting in significant human deaths. Since then, research on CoV has multiplied, leading to a deeper knowledge of the species. It is in this context that this article reviews the history, the biological aspect, the evolution and the crossing of the CoV species barrier. This review shows that CoVs are formed by a large genome (27 to 33 kb) and by structural proteins (spike S, hemagglutinin esterase HE and membran protein M). Various coronaviruses have been described in a wide range of species including chickens (IBV-CoV), pigs (PHE-CoV, PED-CoV, TGE-CoV PR-CoV, PD-CoV, SADS-CoV), cattle (BCoV), cats (FCoV), dogs (CCoV), and humans (HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV2). Birds and bats are the main reservoirs of CoVs, but due to the low fidelity of the replication complex, CoVs have the ability to adapt to various species. Due to the crossing of the species barrier, CoVs have a wide host range resulting in the emergence of various strains worldwide. This information can help researchers develop intervention strategies to prevent the re-emergence of CoVs in the future.
Published in | International Journal of Infectious Diseases and Therapy (Volume 6, Issue 4) |
DOI | 10.11648/j.ijidt.20210604.13 |
Page(s) | 132-145 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Coronavirus, Bats, tMRCA, Viral Evolution, Animal Host, Intermediate Host
[1] | Karesh, W. B., R. A. Cook, E. L. Bennett, and J. Newcomb, Wildlife trade and global disease emergence. Emerging infectious diseases, 2005. 11 (7): p. 1000. |
[2] | Mishra, C., G. Samelius, M. Khanyari, P. N. Srinivas, M. Low, C. Esson, S. Venkatachalam, and Ö. Johansson, Increasing risks for emerging infectious diseases within a rapidly changing High Asia. Ambio, 2021. |
[3] | Bleibtreu, A., M. Bertine, C. Bertin, N. Houhou-Fidouh, and B. Visseaux, Focus on Middle East respiratory syndrome coronavirus (MERS-CoV). Médecine et Maladies Infectieuses, 2019. |
[4] | Chen, Y., Q. Liu, and D. Guo, Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 2020. 92 (4): p. 418-423. |
[5] | Zaki, A. M., S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus, and R. A. Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012. 367 (19): p. 1814-20. |
[6] | Chan, J. F. and K. H. Kok, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. 2020. 9 (1): p. 221-236. |
[7] | Sohrabi, C., Z. Alsafi, N. O'Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, and R. Agha, World Health Organization declares Global Emergency: A review of the 2019 Novel Coronavirus (COVID-19). Int J Surg, 2020. 26 (20): p. 30197-7. |
[8] | World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020 12 mars 2020]; Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. |
[9] | Almeida J. D, Berry D. M., Cunningham C. H., Hamre D., Hofstad M. S., Mallucci L., McIntosh K., and Tyrrell D. A. J., Virology: Coronaviruses. Nature, 1968. 220: Novembre 16 (1968): p. 650. |
[10] | Ashour, H. M., W. F. Elkhatib, M. M. Rahman, and H. A. Elshabrawy, Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens, 2020. 9 (3). |
[11] | Fehr, A. R. and S. Perlman, Coronaviruses: an overview of their replication and pathogenesis. Methods in molecular biology (Clifton, N. J.), 2015. 1282: p. 1-23. |
[12] | Jafari A, Rezaei-Tavirani M, Karami S, Yazdani M, Zali H, and Jafari Z, Cancer Care Management During the COVID-19 Pandemic. Risk Manag Healthc Policy, 2020. 13: p. 1711-1721 / https://doi.org/10.2147/RMHP.S261357. |
[13] | Shah, V. K., P. Firmal, A. Alam, D. Ganguly, and S. Chattopadhyay, Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Frontiers in Immunology, 2020. 11: p. 1949. |
[14] | V’kovski, P., A. Kratzel, S. Steiner, H. Stalder, and V. Thiel, Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 2021. 19 (3): p. 155-170. |
[15] | Beaudette, F. R. and C. B. Hudson, Cultivation of the virus of infectious bronchitis. J. Am. Vet. Med. Assoc. 1937. 90: p. 51-58. |
[16] | Peiris, J. S. M., Y. Guan, and K. Y. Yuen, Severe acute respiratory syndrome. Nature Medicine, 2004. 10 (12): p. S88-S97. |
[17] | Bradburne, A. F., Antigenic relationships amongst coronaviruses. Arch Gesamte Virusforsch, 1970. 31 (3): p. 352-64. |
[18] | Hamre, D. and J. J. Procknow, A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med, 1966. 121 (1): p. 190-3. |
[19] | Chasey, D. and S. F. Cartwright, Virus-like particles associated with porcine epidemic diarrhoea. Res Vet Sci, 1978. 25 (2): p. 255-6. |
[20] | Dea, S., R. S. Roy, and M. A. Elazhary, Calf coronavirus neonatal diarrhea. A literature review (author's transl). The Canadian veterinary journal=La revue veterinaire canadienne, 1981. 22 (3): p. 51-58. |
[21] | Doyle, L. P. and L. M. Hutchings, A transmissible gastroenteritis in pigs. J Am Vet Med Assoc, 1946. 108: p. 257-9. |
[22] | Tobler, K. and M. Ackermann, Identification and characterization of new and unknown coronaviruses using RT-PCR and degenerate primers. Schweiz Arch Tierheilkd, 1996. 138 (2): p. 80-6. |
[23] | Herrewegh, A. A., I. Smeenk, M. C. Horzinek, P. J. Rottier, and R. J. de Groot, Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. Journal of virology, 1998. 72 (5): p. 4508-4514. |
[24] | Bailey, O. T., A. M. Pappenheimer, F. S. Cheever, and J. B. Daniels, A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin: II. Pathology. The Journal of experimental medicine, 1949. 90 (3): p. 195-212. |
[25] | Maminiaina O. F, Razafindrafara M. S, Randriamamisolonirina A. T, Andriamaroarison T. D, Razafinarivo T. D, Andrianony S. A, Ravelomanantsoa M. A, Raberiaka T. H, Zanamasy R. C, Hevidrazana J. L, Rasamoel P. V, Koko, Rajaonarison J. J, and Rakotonirina H. H. C., Connaissances Actuelles Sur Les Coronavirus Bulletin de l’Académie Malgache 2020. |
[26] | Cavanagh, D. and J. Gelb, Infectious bronchitis, in Diseases of Poultry 12th edn (pp. 117–135), Y. M. Saif, A. M. Fadly, J. R. Glisson, L. R. McDougald, L. K. Nolan, and D. E. Swayne, Editors. 2008, Blackwell Publishing Professional: Ames, Iowa, USA. |
[27] | Pauly, M., C. J. Snoeck, V. Phoutana, A. Keosengthong, A. Sausy, L. Khenkha, P. Nouanthong, B. Samountry, P. Jutavijittum, K. Vilivong, J. M. Hübschen, A. P. Black, S. Pommasichan, and C. P. Muller, Cross-species transmission of poultry pathogens in backyard farms: ducks as carriers of chicken viruses. Avian Pathology, 2019. 48 (6): p. 503-511. |
[28] | Bande, F., S. S. Arshad, A. R. Omar, M. H. Bejo, M. S. Abubakar, and Y. Abba, Pathogenesis and Diagnostic Approaches of Avian Infectious Bronchitis. Adv Virol, 2016. 2016: p. 4621659. |
[29] | Mora-Díaz, J. C., P. E. Piñeyro, E. Houston, J. Zimmerman, and L. G. Giménez-Lirola, Porcine Hemagglutinating Encephalomyelitis Virus: A Review. Frontiers in veterinary science, 2019. 6: p. 53-53. |
[30] | Roe, C. K. and T. J. Alexander, A Disease of Nursing Pigs Previously Unreported in Ontario. Canadian journal of comparative medicine and veterinary science, 1958. 22 (9): p. 305-307. |
[31] | Zeng, Q., M. A. Langereis, A. L. W. van Vliet, E. G. Huizinga, and R. J. de Groot, Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105 (26): p. 9065-9069. |
[32] | Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virology journal, 2015. 12: p. 193-193. |
[33] | Pensaert, M. B. and P. de Bouck, A new coronavirus-like particle associated with diarrhea in swine. Arch Virol, 1978. 58 (3): p. 243-7. |
[34] | Antas, M. and G. Woźniakowski, Current Status of Porcine Epidemic Diarrhoea (PED) in European Pigs. Journal of veterinary research, 2019. 63 (4): p. 465-470. |
[35] | Brnić, D., I. Šimić, I. Lojkić, N. Krešić, A. Jungić, D. Balić, M. Lolić, D. Knežević, and B. Hengl, The emergence of porcine epidemic diarrhoea in Croatia: molecular characterization and serology. BMC veterinary research, 2019. 15 (1): p. 249-249. |
[36] | Hanke, D., A. Pohlmann, C. Sauter-Louis, D. Höper, J. Stadler, M. Ritzmann, A. Steinrigl, B.-A. Schwarz, V. Akimkin, R. Fux, S. Blome, and M. Beer, Porcine Epidemic Diarrhea in Europe: In-Detail Analyses of Disease Dynamics and Molecular Epidemiology. Viruses, 2017. 9 (7): p. 177. |
[37] | Song, D., H. Moon, and B. Kang, Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clinical and experimental vaccine research, 2015. 4 (2): p. 166-176. |
[38] | Chen, F., T. P. Knutson, S. Rossow, L. J. Saif, and D. G. Marthaler, Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. Scientific reports, 2019. 9 (1): p. 3953-3953. |
[39] | Marthaler, D., L. Raymond, Y. Jiang, J. Collins, K. Rossow, and A. Rovira, Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus. Emerging infectious diseases, 2014. 20 (8): p. 1347-1350. |
[40] | Cubero, M. J., L. Leon, A. Contreras, R. Astorga, I. Lanza, and A. Garcia, Transmissible gastroenteritis in pigs in south east Spain: prevalence and factors associated with infection. Vet Rec, 1993. 132 (10): p. 238-41. |
[41] | Falsey, A. R., R. M. McCann, W. J. Hall, M. M. Criddle, M. A. Formica, D. Wycoff, and J. E. Kolassa, The "common cold" in frail older persons: impact of rhinovirus and coronavirus in a senior daycare center. J Am Geriatr Soc, 1997. 45 (6): p. 706-11. |
[42] | Hou, Y., X. Yue, X. Cai, S. Wang, Y. Liu, C. Yuan, L. Cui, X. Hua, and Z. Yang, Complete genome of transmissible gastroenteritis virus AYU strain isolated in Shanghai, China. Journal of virology, 2012. 86 (21): p. 11935-11935. |
[43] | Martins, A. M. C. R. P. F., J. G. Bersano, R. Ogata, G. Amante, B. D. B. Nastari, and M. H. B. Catroxo, Diagnosis to Detect Porcine Transmissible Gastroenteritis Virus (TGEV) by Optical and Transmission Electron Microscopy Techniques. International Journal of Morphology, 2013. 31: p. 706-715. |
[44] | McIntosh, K., Coronaviruses: a comparative review. Curr. Top. Microbiol. Immunol., 1974. 63: p. 85-129. |
[45] | Pyrc, K., A. C. Sims, R. Dijkman, M. Jebbink, C. Long, D. Deming, E. Donaldson, A. Vabret, R. Baric, L. van der Hoek, and R. Pickles, Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures. J Virol, 2010. 84 (21): p. 11255-63. |
[46] | Williams, R., J. J. Esterhuysen, and J. T. Robinson, Pseudorabies and transmissible gastroenteritis: a serological survey in South Africa. Onderstepoort J Vet Res, 1994. 61 (1): p. 67-70. |
[47] | Aynaud, J.-M., T. D. Nguyen, E. Bottreau, A. Brun, and P. Vannier, Transmissible Gastroenteritis (TGE) of Swine: Survivor Selection of TGE Virus Mutants in Stomach Juice of Adult Pigs. Journal of General Virology, 1985. 66 (9): p. 1911-1917. |
[48] | Haelterman, E. O. and B. E. Hooper, Transmissible gastroenteritis of swine as a model for the study of enteric disease. Gastroenterology, 1967. 53 (1): p. 109-13. |
[49] | Usami, Y., K. Fukai, Y. Ichikawa, Y. Okuda, I. Shibata, C. Motoyama, K. Imai, and R. Kirisawa, Virological and Serological Studies of Porcine Respiratory Coronavirus Infection on a Japanese Farm. Journal of Veterinary Medical Science, 2008. 70 (9): p. 929-936. |
[50] | Laude, H., K. Van Reeth, and M. Pensaert, Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet Res, 1993. 24 (2): p. 125-50. |
[51] | Muley, T., The possible role of transmissible gastroenteritis virus (TGE) and porcine respiratory corona virus (PRCV) in the mortality of Ugandan back-yard piglets.. Swedish University of Agricultural Sciences, 2012. |
[52] | Wang, L., B. Byrum, and Y. Zhang, Porcine coronavirus HKU15 detected in 9 US states, 2014. Emerging infectious diseases, 2014. 20 (9): p. 1594-1595. |
[53] | Rasschaert, D., M. Duarte, and H. Laude, Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. Journal of General Virology, 1990. 71 (11): p. 2599-2607. |
[54] | Woo, P. C. Y., S. K. P. Lau, C. S. F. Lam, C. C. Y. Lau, A. K. L. Tsang, J. H. N. Lau, R. Bai, J. L. L. Teng, C. C. C. Tsang, M. Wang, B. -J. Zheng, K.-H. Chan, and K.-Y. Yuen, Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of virology, 2012. 86 (7): p. 3995-4008. |
[55] | Zhang, J., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Research, 2016. 226: p. 71-84. |
[56] | Zhou, P., H. Fan, T. Lan, X. L. Yang, W. F. Shi, W. Zhang, Y. Zhu, Y. W. Zhang, Q. M. Xie, S. Mani, X. S. Zheng, B. Li, J. M. Li, H. Guo, G. Q. Pei, X. P. An, J. W. Chen, L. Zhou, K. J. Mai, Z. X. Wu, D. Li, D. E. Anderson, L. B. Zhang, S. Y. Li, Z. Q. Mi, T. T. He, F. Cong, P. J. Guo, R. Huang, Y. Luo, X. L. Liu, J. Chen, Y. Huang, Q. Sun, X. L. Zhang, Y. Y. Wang, S. Z. Xing, Y. S. Chen, Y. Sun, J. Li, P. Daszak, L. F. Wang, Z. L. Shi, Y. G. Tong, and J. Y. Ma, Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018. 556 (7700): p. 255-258. |
[57] | Jung, K., H. Hu, B. Eyerly, Z. Lu, J. Chepngeno, and L. J. Saif, Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs. Emerging infectious diseases, 2015. 21 (4): p. 650-654. |
[58] | Vitosh-Sillman, S., J. D. Loy, B. Brodersen, C. Kelling, A. Doster, C. Topliff, E. Nelson, J. Bai, E. Schirtzinger, E. Poulsen, B. Meadors, J. Anderson, B. Hause, G. Anderson, and R. Hesse, Experimental infection of conventional nursing pigs and their dams with Porcine deltacoronavirus. J Vet Diagn Invest, 2016. 28 (5): p. 486-97. |
[59] | Boley, P. A., M. A. Alhamo, G. Lossie, K. K. Yadav, M. Vasquez-Lee, L. J. Saif, and S. P. Kenney, Porcine Deltacoronavirus Infection and Transmission in Poultry, United States (1). Emerging infectious diseases, 2020. 26 (2): p. 255-265. |
[60] | Zhou, L., Q. N. Li, J. N. Su, G. H. Chen, Z. X. Wu, Y. Luo, R. T. Wu, Y. Sun, T. Lan, and J. Y. Ma, The re-emerging of SADS-CoV infection in pig herds in Southern China. Transboundary and Emerging Diseases, 2019. 66 (5): p. 2180-2183. |
[61] | Gong, L., J. Li, Q. Zhou, Z. Xu, L. Chen, Y. Zhang, C. Xue, Z. Wen, and Y. Cao, A New Bat-HKU2-like Coronavirus in Swine, China, 2017. Emerg Infect Dis, 2017. 23 (9). |
[62] | Pan, Y., X. Tian, P. Qin, B. Wang, P. Zhao, Y. L. Yang, L. Wang, D. Wang, Y. Song, X. Zhang, and Y. W. Huang, Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet Microbiol, 2017. 211: p. 15-21. |
[63] | Cui, J., F. Li, and Z. L. Shi, Origin and evolution of pathogenic coronaviruses. 2019. 17 (3): p. 181-192. |
[64] | Balasuriya, U. B. R., S. Barratt-Boyes, M. Beer, B. Bird, J. Brownlie, L. L. Coffey, J. M. Cullen, G. A. Delhon, R. O. Donis, I. Gardner, J. Gilkerson, W. T. Golde, C. Hartley, H. Heidner, C. Herden, P. Kirkland, D. P. Knowles, X. -J. Meng, J. Munday, B. Murphy, S. Niewiesk, M. Oglesbee, K. Osterrieder, C. Oura, M. Palmarini, J. Parker, C. R. Parrish, P. Pesavento, W. Reisen, J. A. Richt, C. J. Sigurdson, J. Towner, V. von Messling, and G. Whittaker, Chapter 24 - Coronaviridae, in Fenner's Veterinary Virology (Fifth Edition), N. J. MacLachlan and E. J. Dubovi, Editors. 2017, Academic Press: Boston. p. xvii-xviii. |
[65] | Caswell, J. L. and K. J. Williams, Chapter 5 - Respiratory System, in Jubb, Kennedy & Palmer's Pathology of Domestic Animals: Volume 2 (Sixth Edition), M. G. Maxie, Editor. 2016, W. B. Saunders. p. 465-591. e4. |
[66] | Peek, S. F., S. M. McGuirk, R. W. Sweeney, and K. J. Cummings, 6 - Infectious Diseases of the Gastrointestinal Tract, in Rebhun's Diseases of Dairy Cattle (Third Edition), S. F. Peek and T. J. Divers, Editors. 2018, Elsevier. p. 249-356. |
[67] | Underwood, W. J., R. Blauwiekel, M. L. Delano, R. Gillesby, S. A. Mischler, and A. Schoell, Chapter 15 - Biology and Diseases of Ruminants (Sheep, Goats, and Cattle), in Laboratory Animal Medicine (Third Edition), J. G. Fox, L. C. Anderson, G. M. Otto, K. R. Pritchett-Corning, and M. T. Whary, Editors. 2015, Academic Press: Boston. p. 623-694. |
[68] | Perlman, S. and J. Netland, Coronaviruses post-SARS: update on replication and pathogenesis. Nature reviews. Microbiology, 2009. 7 (6): p. 439-450. |
[69] | Uzal, F. A., B. L. Plattner, and J. M. Hostetter, Chapter 1 - Alimentary System, in Jubb, Kennedy & Palmer's Pathology of Domestic Animals: Volume 2 (Sixth Edition), M. G. Maxie, Editor. 2016, W. B. Saunders. p. 1-257. e2. |
[70] | Myrrha, L. W., F. M. F. Silva, E. F. d. O. Peternelli, A. S. Junior, M. Resende, and M. R. de Almeida, The paradox of feline coronavirus pathogenesis: a review. Advances in virology, 2011. 2011: p. 109849-109849. |
[71] | Holzworth, J., Some important disorders of cats. Cornell Vet, 1963. 53: p. 157-60. |
[72] | Ward, J. M., Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology, 1970. 41 (1): p. 191-194. |
[73] | Fiscus, S. A. and Y. A. Teramoto, Antigenic comparison of feline coronavirus isolates: evidence for markedly different peplomer glycoproteins. Journal of virology, 1987. 61 (8): p. 2607-2613. |
[74] | Shiba, N., K. Maeda, H. Kato, M. Mochizuki, and H. Iwata, Differentiation of feline coronavirus type I and II infections by virus neutralization test. Veterinary Microbiology, 2007. 124 (3): p. 348-352. |
[75] | Buonavoglia, C., N. Decaro, V. Martella, G. Elia, M. Campolo, C. Desario, M. Castagnaro, and M. Tempesta, Canine coronavirus highly pathogenic for dogs. Emerging infectious diseases, 2006. 12 (3): p. 492-494. |
[76] | Binn, L. N., E. C. Lazar, K. P. Keenan, D. L. Huxsoll, R. H. Marchwicki, and A. J. Strano, Recovery and characterization of a coronavirus from military dogs with diarrhea. Proc Annu Meet U S Anim Health Assoc, 1974. 78 (78): p. 359-66. |
[77] | Pratelli, P., Genetic evolution of canine coronavirus and recent advances in prophylaxis. Vet. Res., 2006. 37 (2): p. 191-200. |
[78] | Pratelli, A., V. Martella, N. Decaro, A. Tinelli, M. Camero, F. Cirone, G. Elia, A. Cavalli, M. Corrente, G. Greco, D. Buonavoglia, M. Gentile, M. Tempesta, and C. Buonavoglia, Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy. Journal of Virological Methods, 2003. 110 (1): p. 9-17. |
[79] | Licitra, B. N., G. E. Duhamel, and G. R. Whittaker, Canine enteric coronaviruses: emerging viral pathogens with distinct recombinant spike proteins. Viruses, 2014. 6 (8): p. 3363-3376. |
[80] | Tennant, B. J., R. M. Gaskell, D. F. Kelly, S. D. Carter, and C. J. Gaskell, Canine coronavirus infection in the dog following oronasal inoculation. Research in Veterinary Science, 1991. 51 (1): p. 11-18. |
[81] | Wang, M., Y. Zhou, Z. Zong, Z. Liang, Y. Cao, H. Tang, B. Song, Z. Huang, Y. Kang, P. Feng, B. Ying, and W. Li, A precision medicine approach to managing Wuhan Coronavirus pneumonia. Precision Clinical Medicine, 2020. |
[82] | Birch, C. J., H. J. Clothier, A. Seccull, T. Tran, M. C. Catton, S. B. Lambert, and J. D. Druce, Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia. Epidemiology and infection, 2005. 133 (2): p. 273-277. |
[83] | Davis, B. M., B. Foxman, A. S. Monto, R. S. Baric, E. T. Martin, A. Uzicanin, J. J. Rainey, and A. E. Aiello, Human coronaviruses and other respiratory infections in young adults on a university campus: Prevalence, symptoms, and shedding. Influenza and other respiratory viruses, 2018. 12 (5): p. 582-590. |
[84] | Falsey, A. R., E. E. Walsh, and F. G. Hayden, Rhinovirus and Coronavirus Infection-Associated Hospitalizations among Older Adults. The Journal of Infectious Diseases, 2002. 185 (9): p. 1338-1341. |
[85] | Tyrrell, D. A. and M. L. Bynoe, Cultivation of a novel type of common-cold virus in organ cultures. British medical journal, 1965. 1 (5448): p. 1467-1470. |
[86] | van der Hoek, L., K. Pyrc, M. F. Jebbink, W. Vermeulen-Oost, R. J. Berkhout, K. C. Wolthers, P. M. Wertheim-van Dillen, J. Kaandorp, J. Spaargaren, and B. Berkhout, Identification of a new human coronavirus. Nat Med, 2004. 10 (4): p. 368-73. |
[87] | Bradburne, A. F., M. L. Bynoe, and D. A. Tyrrell, Effects of a "new" human respiratory virus in volunteers. British medical journal, 1967. 3 (5568): p. 767-769. |
[88] | McIntosh, K., W. B. Becker, and R. M. Chanock, Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. Proceedings of the National Academy of Sciences of the United States of America, 1967. 58 (6): p. 2268-2273. |
[89] | Woo, P. C. Y., S. K. P. Lau, C. -m. Chu, K. -h. Chan, H. -w. Tsoi, Y. Huang, B. H. L. Wong, R. W. S. Poon, J. J. Cai, W. -k. Luk, L. L. M. Poon, S. S. Y. Wong, Y. Guan, J. S. M. Peiris, and K. -y. Yuen, Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. Journal of virology, 2005. 79 (2): p. 884-895. |
[90] | Cui, L.-J., C. Zhang, T. Zhang, R.-J. Lu, Z.-D. Xie, L.-L. Zhang, C.-Y. Liu, W.-M. Zhou, L. Ruan, X.-J. Ma, and W.-J. Tan, Human Coronaviruses HCoV-NL63 and HCoV-HKU1 in Hospitalized Children with Acute Respiratory Infections in Beijing, China. Advances in virology, 2011. 2011: p. 129134-129134. |
[91] | Lau, S. K. P., P. C. Y. Woo, C. C. Y. Yip, H. Tse, H.-w. Tsoi, V. C. C. Cheng, P. Lee, B. S. F. Tang, C. H. Y. Cheung, R. A. Lee, L.-y. So, Y.-l. Lau, K.-h. Chan, and K.-y. Yuen, Coronavirus HKU1 and other coronavirus infections in Hong Kong. Journal of clinical microbiology, 2006. 44 (6): p. 2063-2071. |
[92] | Jonsdottir, H. R. and R. Dijkman, Coronaviruses and the human airway: a universal system for virus-host interaction studies. Virology journal, 2016. 13: p. 24-24. |
[93] | Larson, H. E., S. E. Reed, and D. A. Tyrrell, Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J Med Virol, 1980. 5 (3): p. 221-9. |
[94] | Kim, S., P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant, PubChem Substance and Compound databases. Nucleic acids research, 2016. 44 (D1): p. D1202-D1213. |
[95] | Fields, B. N., D. M. Knipe, and P. M. Howley, Fields virology. 2013, Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. |
[96] | Zhong, N. S., B. J. Zheng, Y. M. Li, Poon, Z. H. Xie, K. H. Chan, P. H. Li, S. Y. Tan, Q. Chang, J. P. Xie, X. Q. Liu, J. Xu, D. X. Li, K. Y. Yuen, Peiris, and Y. Guan, Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet, 2003. 362 (9393): p. 1353-8. |
[97] | Burrell, C. J., C. R. Howard, and F. A. Murphy, Chapter 31 - Coronaviruses, in Fenner and White's Medical Virology (Fifth Edition), C. J. Burrell, C. R. Howard, and F. A. Murphy, Editors. 2017, Academic Press: London. p. 437-446. |
[98] | Cherry, J. D., The chronology of the 2002–2003 SARS mini pandemic. Paediatric Respiratory Reviews, 2004. 5 (4): p. 262-269. |
[99] | Swerdlow, D. L. and L. Finelli, Preparation for Possible Sustained Transmission of 2019 Novel Coronavirus: Lessons From Previous Epidemics. JAMA, 2020. |
[100] | Mohd, H. A., Z. A. Memish, S. H. Alfaraj, D. McClish, T. Altuwaijri, M. S. Alanazi, S. A. Aloqiel, A. M. Alenzi, F. Bafaqeeh, A. M. Mohamed, K. Aldosari, and S. Ghazal, Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia. Travel Med Infect Dis, 2016. 14 (5): p. 464-470. |
[101] | Arabi, Y. M., A. A. Arifi, H. H. Balkhy, H. Najm, A. S. Aldawood, A. Ghabashi, H. Hawa, A. Alothman, A. Khaldi, and B. Al Raiy, Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med, 2014. 160 (6): p. 389-97. |
[102] | Garbati, M. A., S. F. Fagbo, V. J. Fang, L. Skakni, M. Joseph, T. A. Wani, B. J. Cowling, M. Peiris, and A. Hakawi, A Comparative Study of Clinical Presentation and Risk Factors for Adverse Outcome in Patients Hospitalised with Acute Respiratory Disease Due to MERS Coronavirus or Other Causes. PLOS ONE, 2016. 11 (11): p. e0165978. |
[103] | Joob, B. and V. Wiwanitkit, Middle East respiratory syndrome coronavirus infection: a short note on cases with renal failure problem. Ren Fail, 2016. 38 (10): p. 1749-1750. |
[104] | Wu, D., T. Wu, Q. Liu, and Z. Yang, The SARS-CoV-2 outbreak: what we know. International Journal of Infectious Diseases, 2020. |
[105] | Honigsbaum, M., Disease X and other unknowns. Lancet (London, England), 2019. 393 (10180): p. 1496-1497. |
[106] | Lai, C.-C., T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 2020. 55 (3): p. 105924. |
[107] | Paraskevis, D., E. G. Kostaki, G. Magiorkinis, G. Panayiotakopoulos, G. Sourvinos, and S. Tsiodras, Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 2020. 79: p. 104212. |
[108] | Tang, X., C. Wu, X. Li, Y. Song, X. Yao, X. Wu, Y. Duan, H. Zhang, Y. Wang, Z. Qian, J. Cui, and J. Lu, On the origin and continuing evolution of SARS-CoV-2. National Science Review, 2020. |
[109] | Karamitros, T., G. Papadopoulou, M. Bousali, A. Mexias, S. Tsiodras, and A. Mentis, SARS-CoV-2 exhibits intra-host genomic plasticity and low-frequency polymorphic quasispecies. bioRxiv, 2020: p. 2020.03.27.009480. |
[110] | Wu, A., P. Niu, L. Wang, H. Zhou, X. Zhao, W. Wang, J. Wang, C. Ji, X. Ding, X. Wang, R. Lu, S. Gold, S. Aliyari, S. Zhang, E. Vikram, A. Zou, E. Lenh, J. Chen, F. Ye, N. Han, Y. Peng, H. Guo, G. Wu, T. Jiang, W. Tan, and G. Cheng, Mutations, Recombination and Insertion in the Evolution of 2019-nCoV. bioRxiv, 2020: p. 2020.02.29.971101. |
[111] | Forni, D., R. Cagliani, M. Clerici, and M. Sironi, Molecular Evolution of Human Coronavirus Genomes. Trends in microbiology, 2017. 25 (1): p. 35-48. |
[112] | Wu, Z., L. Yang, X. Ren, J. Zhang, F. Yang, S. Zhang, and Q. Jin, ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus. The Journal of infectious diseases, 2016. 213 (4): p. 579-583. |
[113] | Lau, S. K. P., Y. Feng, H. Chen, H. K. H. Luk, W. -H. Yang, K. S. M. Li, Y. -Z. Zhang, Y. Huang, Z. -Z. Song, W. -N. Chow, R. Y. Y. Fan, S. S. Ahmed, H. C. Yeung, C. S. F. Lam, J. -P. Cai, S. S. Y. Wong, J. F. W. Chan, K. -Y. Yuen, H. -L. Zhang, and P. C. Y. Woo, Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of virology, 2015. 89 (20): p. 10532-10547. |
[114] | Ma, Y., L. Wu, N. Shaw, Y. Gao, J. Wang, Y. Sun, Z. Lou, L. Yan, R. Zhang, and Z. Rao, Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112 (30): p. 9436-9441. |
[115] | Becares, M., A. Pascual-Iglesias, A. Nogales, I. Sola, L. Enjuanes, and S. Zuñiga, Mutagenesis of Coronavirus nsp14 Reveals Its Potential Role in Modulation of the Innate Immune Response. Journal of virology, 2016. 90 (11): p. 5399-5414. |
[116] | Snijder, E. J., P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr, L. L. Poon, Y. Guan, M. Rozanov, W. J. Spaan, and A. E. Gorbalenya, Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 2003. 331 (5): p. 991-1004. |
[117] | Mandary, M. B., M. Masomian, and C. L. Poh, Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. International journal of molecular sciences, 2019. 20 (18): p. 4657. |
[118] | Vignuzzi, M., J. K. Stone, J. J. Arnold, C. E. Cameron, and R. Andino, Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 2006. 439 (7074): p. 344-348. |
[119] | Lin, L., L. Lu, W. Cao, and T. Li, Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerging Microbes & Infections, 2020. 9 (1): p. 727-732. |
[120] | Tang, B., N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, and J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious Disease Modelling, 2020. 5: p. 248-255. |
[121] | Ye, Z. -W., S. Yuan, K. -S. Yuen, S. -Y. Fung, C. -P. Chan, and D. -Y. Jin, Zoonotic origins of human coronaviruses. International journal of biological sciences, 2020. 16 (10): p. 1686-1697. |
[122] | Chan, J. F., K. K. To, H. Tse, D. Y. Jin, and K. Y. Yuen, Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol, 2013. 21 (10): p. 544-55. |
[123] | de Sales Lima, F. E., P. Gil, M. Pedrono, C. Minet, O. Kwiatek, F. S. Campos, F. R. Spilki, P. M. Roehe, A. C. Franco, O. F. Maminiaina, E. Albina, and R. S. de Almeida, Diverse gammacoronaviruses detected in wild birds from Madagascar. European Journal of Wildlife Research, 2015. 61 (4): p. 635-639. |
[124] | O'Shea, T. J., P. M. Cryan, A. A. Cunningham, A. R. Fooks, D. T. S. Hayman, A. D. Luis, A. J. Peel, R. K. Plowright, and J. L. N. Wood, Bat flight and zoonotic viruses. Emerging infectious diseases, 2014. 20 (5): p. 741-745. |
[125] | Rodhain, F., Bats and Viruses: complex relationships. Bulletin de la Societe de pathologie exotique (1990), 2015. 108 (4): p. 272-289. |
[126] | Zhang, G., C. Cowled, Z. Shi, Z. Huang, K. A. Bishop-Lilly, X. Fang, J. W. Wynne, Z. Xiong, M. L. Baker, W. Zhao, M. Tachedjian, Y. Zhu, P. Zhou, X. Jiang, J. Ng, L. Yang, L. Wu, J. Xiao, Y. Feng, Y. Chen, X. Sun, Y. Zhang, G. A. Marsh, G. Crameri, C. C. Broder, K. G. Frey, L. -F. Wang, and J. Wang, Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science, 2013. 339 (6118): p. 456. |
[127] | Vijaykrishna, D., G. J. D. Smith, J. X. Zhang, J. S. M. Peiris, H. Chen, and Y. Guan, Evolutionary insights into the ecology of coronaviruses. Journal of virology, 2007. 81 (8): p. 4012-4020. |
[128] | Borrell, F., A. Junno, and J. A. Barceló, Synchronous Environmental and Cultural Change in the Emergence of Agricultural Economies 10,000 Years Ago in the Levant. PLOS ONE, 2015. 10 (8): p. e0134810. |
[129] | Richards, M. P., A brief review of the archaeological evidence for Palaeolithic and Neolithic subsistence. European Journal of Clinical Nutrition, 2002. 56 (12): p. 1270-1278. |
[130] | Jones, B. A., D. Grace, R. Kock, S. Alonso, J. Rushton, M. Y. Said, D. McKeever, F. Mutua, J. Young, J. McDermott, and D. U. Pfeiffer, Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110 (21): p. 8399-8404. |
[131] | Woo, P. C., S. K. Lau, Y. Huang, and K. Y. Yuen, Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood), 2009. 234 (10): p. 1117-27. |
[132] | Larson, G. and D. Q. Fuller, The Evolution of Animal Domestication. Annual Review of Ecology, Evolution, and Systematics, 2014. 45 (1): p. 115-136. |
[133] | Gerdts, V. and A. Zakhartchouk, Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Veterinary microbiology, 2017. 206: p. 45-51. |
[134] | Takamura, K., Y. Matsumoto, and Y. Shimizu, Field study of bovine coronavirus vaccine enriched with hemagglutinating antigen for winter dysentery in dairy cows. Canadian journal of veterinary research=Revue canadienne de recherche veterinaire, 2002. 66 (4): p. 278-281. |
[135] | Cook, J. K., M. Jackwood, and R. C. Jones, The long view: 40 years of infectious bronchitis research. Avian Pathol, 2012. 41 (3): p. 239-50. |
[136] | Liu, S., J. Chen, J. Chen, X. Kong, Y. Shao, Z. Han, L. Feng, X. Cai, S. Gu, and M. Liu, Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). Journal of General Virology, 2005. 86 (3): p. 719-725. |
[137] | Sun, L., G. -h. Zhang, J. -w. Jiang, J. -d. Fu, T. Ren, W. -s. Cao, C. -a. Xin, M. Liao, and W. -j. Liu, A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens. Virus Research, 2007. 130 (1): p. 121-128. |
[138] | Hughes, L. A., C. Savage, C. Naylor, M. Bennett, J. Chantrey, and R. Jones, Genetically diverse coronaviruses in wild bird populations of northern England. Emerging infectious diseases, 2009. 15 (7): p. 1091-1094. |
[139] | Mohammed, A. R., F. E. Rania, M. H. Ahmed, M. B. Mahmoud, A. E. Mohamed, A. A. Kawkab, Z. S. Muhammad, and M. Muhammad, Genetic Diversity and Phylodynamics of Avian Coronaviruses in Egyptian Wild Birds. Viruses, 2019. 11 (1): p. 57. |
[140] | Cavanagh, D., Coronavirus avian infectious bronchitis virus. Vet Res, 2007. 38 (2): p. 281-97. |
[141] | McKinley, E. T., D. A. Hilt, and M. W. Jackwood, Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine, 2008. 26 (10): p. 1274-1284. |
[142] | Moreno, A., G. Franzo, P. Massi, G. Tosi, A. Blanco, N. Antilles, M. Biarnes, N. Majo, M. Nofrarias, R. Dolz, D. Lelli, E. Sozzi, A. Lavazza, and M. Cecchinato, A novel variant of the infectious bronchitis virus resulting from recombination events in Italy and Spain. Avian Pathol, 2017. 46 (1): p. 28-35. |
[143] | Franzo, G., M. Legnardi, C. M. Tucciarone, M. Drigo, M. Martini, and M. Cecchinato, Evolution of infectious bronchitis virus in the field after homologous vaccination introduction. Veterinary Research, 2019. 50 (1): p. 92. |
[144] | Hayman, D. T. S., R. A. Bowen, P. M. Cryan, G. F. McCracken, T. J. O'Shea, A. J. Peel, A. Gilbert, C. T. Webb, and J. L. N. Wood, Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses and public health, 2013. 60 (1): p. 2-21. |
[145] | Pfefferle, S., S. Oppong, J. F. Drexler, F. Gloza-Rausch, A. Ipsen, A. Seebens, M. A. Müller, A. Annan, P. Vallo, Y. Adu-Sarkodie, T. F. Kruppa, and C. Drosten, Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerging infectious diseases, 2009. 15 (9): p. 1377-1384. |
[146] | Lau, S. K., P. C. Woo, K. S. Li, A. K. Tsang, R. Y. Fan, H. K. Luk, J. P. Cai, K. H. Chan, B. J. Zheng, M. Wang, and K. Y. Yuen, Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J Virol, 2015. 89 (6): p. 3076-92. |
[147] | Drosten, C., S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr, Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 2003. 348 (20): p. 1967-76. |
[148] | Corman, V. M., D. Muth, D. Niemeyer, and C. Drosten, Chapter Eight - Hosts and Sources of Endemic Human Coronaviruses, in Advances in Virus Research, M. Kielian, T. C. Mettenleiter, and M. J. Roossinck, Editors. 2018, Academic Press. p. 163-188. |
[149] | Darling, M. I. and H. D. Donoghue, Insights from paleomicrobiology into the indigenous peoples of pre-colonial America - a review. Memorias do Instituto Oswaldo Cruz, 2014. 109 (2): p. 131-139. |
[150] | Marr, J. S. and J. T. Cathey, New hypothesis for cause of epidemic among native Americans, New England, 1616-1619. Emerging infectious diseases, 2010. 16 (2): p. 281-286. |
[151] | Brygoo, E. R., Epidemiologie de la peste à Madagascar. Arch Inst Pasteur Madagascar 1966. 35: p. 9-147. |
[152] | Rogalski, M. A., C. D. Gowler, C. L. Shaw, R. A. Hufbauer, and M. A. Duffy, Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2017. 372 (1712): p. 20160043. |
[153] | Wit, E. d., N. v. Doremalen, D. Falzarano, and V. Munster, SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews. Microbiology, 2016. 14: p. 523 - 534. |
[154] | Zhou, P., X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. D. Jiang, M. Q. Liu, Y. Chen, X. R. Shen, X. Wang, X. S. Zheng, K. Zhao, Q. J. Chen, F. Deng, L. L. Liu, B. Yan, F. X. Zhan, Y. Y. Wang, G. F. Xiao, and Z. L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020. 579 (7798): p. 270-273. |
[155] | Liu, J., W. Xie, Y. Wang, Y. Xiong, S. Chen, J. Han, and Q. Wu, A comparative overview of COVID-19, MERS and SARS: Review article. International journal of surgery (London, England), 2020. 81: p. 1-8. |
APA Style
Maminiaina Olivier Fridolin, Razafindrafara Mirantsoa Suzanne. (2021). History of Epizootics, Epidemics and Evolution of Coronaviruses. International Journal of Infectious Diseases and Therapy, 6(4), 132-145. https://doi.org/10.11648/j.ijidt.20210604.13
ACS Style
Maminiaina Olivier Fridolin; Razafindrafara Mirantsoa Suzanne. History of Epizootics, Epidemics and Evolution of Coronaviruses. Int. J. Infect. Dis. Ther. 2021, 6(4), 132-145. doi: 10.11648/j.ijidt.20210604.13
AMA Style
Maminiaina Olivier Fridolin, Razafindrafara Mirantsoa Suzanne. History of Epizootics, Epidemics and Evolution of Coronaviruses. Int J Infect Dis Ther. 2021;6(4):132-145. doi: 10.11648/j.ijidt.20210604.13
@article{10.11648/j.ijidt.20210604.13, author = {Maminiaina Olivier Fridolin and Razafindrafara Mirantsoa Suzanne}, title = {History of Epizootics, Epidemics and Evolution of Coronaviruses}, journal = {International Journal of Infectious Diseases and Therapy}, volume = {6}, number = {4}, pages = {132-145}, doi = {10.11648/j.ijidt.20210604.13}, url = {https://doi.org/10.11648/j.ijidt.20210604.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijidt.20210604.13}, abstract = {Coronavirus (CoV), which causes animal diseases, has become a human health concern. Prior to 2003, CoV caused respiratory diseases and enteric disorders, but after 2003, CoV caused three acute respiratory syndromes, resulting in significant human deaths. Since then, research on CoV has multiplied, leading to a deeper knowledge of the species. It is in this context that this article reviews the history, the biological aspect, the evolution and the crossing of the CoV species barrier. This review shows that CoVs are formed by a large genome (27 to 33 kb) and by structural proteins (spike S, hemagglutinin esterase HE and membran protein M). Various coronaviruses have been described in a wide range of species including chickens (IBV-CoV), pigs (PHE-CoV, PED-CoV, TGE-CoV PR-CoV, PD-CoV, SADS-CoV), cattle (BCoV), cats (FCoV), dogs (CCoV), and humans (HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV2). Birds and bats are the main reservoirs of CoVs, but due to the low fidelity of the replication complex, CoVs have the ability to adapt to various species. Due to the crossing of the species barrier, CoVs have a wide host range resulting in the emergence of various strains worldwide. This information can help researchers develop intervention strategies to prevent the re-emergence of CoVs in the future.}, year = {2021} }
TY - JOUR T1 - History of Epizootics, Epidemics and Evolution of Coronaviruses AU - Maminiaina Olivier Fridolin AU - Razafindrafara Mirantsoa Suzanne Y1 - 2021/10/15 PY - 2021 N1 - https://doi.org/10.11648/j.ijidt.20210604.13 DO - 10.11648/j.ijidt.20210604.13 T2 - International Journal of Infectious Diseases and Therapy JF - International Journal of Infectious Diseases and Therapy JO - International Journal of Infectious Diseases and Therapy SP - 132 EP - 145 PB - Science Publishing Group SN - 2578-966X UR - https://doi.org/10.11648/j.ijidt.20210604.13 AB - Coronavirus (CoV), which causes animal diseases, has become a human health concern. Prior to 2003, CoV caused respiratory diseases and enteric disorders, but after 2003, CoV caused three acute respiratory syndromes, resulting in significant human deaths. Since then, research on CoV has multiplied, leading to a deeper knowledge of the species. It is in this context that this article reviews the history, the biological aspect, the evolution and the crossing of the CoV species barrier. This review shows that CoVs are formed by a large genome (27 to 33 kb) and by structural proteins (spike S, hemagglutinin esterase HE and membran protein M). Various coronaviruses have been described in a wide range of species including chickens (IBV-CoV), pigs (PHE-CoV, PED-CoV, TGE-CoV PR-CoV, PD-CoV, SADS-CoV), cattle (BCoV), cats (FCoV), dogs (CCoV), and humans (HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV2). Birds and bats are the main reservoirs of CoVs, but due to the low fidelity of the replication complex, CoVs have the ability to adapt to various species. Due to the crossing of the species barrier, CoVs have a wide host range resulting in the emergence of various strains worldwide. This information can help researchers develop intervention strategies to prevent the re-emergence of CoVs in the future. VL - 6 IS - 4 ER -