| Peer-Reviewed

Stability and Absorption of Fourteen Manzamenones, Artemisinin and Quinine Isolated and Complexed with H2O, Alanine by ONIOM, DFT and TD-DFT Methods

Received: 16 June 2022    Accepted: 1 July 2022    Published: 12 July 2022
Views:       Downloads:
Abstract

This work is carried out on fourteen Manzamenones and two antimalarials (Quinine and Artemisinin). It was undertaken to compare their reactivity parameters on one hand and on the other hand, the absorption properties in the UV range for the isolated molecules and two types of complexes studied. Manzamenones are an atypical class of fatty acids. They are isolated from a marine sponge of the genus Plakortis kenyensis and used in the treatment of malaria. The study is based on quantum chemical calculations. First, we calculated and compared the reactivity parameters of the complexes to those of the isolated molecules. The levels of theory used to calculate the complexes of Manzamenones are ONIOM (B3LYP/6-31++G(d,p); AM1) and ONIOM (B3LYP/6-31+G(d,p); AM1). Those used to calculate the complexes of Quinine and Artemisinin are B3LYP/6-31++G(d,p) and B3LYP/6-31+G(d,p). Secondly, for each molecule and its two studied complexes, we have realized the UV absorption spectra. The time dependent density functional theory (TD-DFT) method was used for these calculations. These different comparisons allowed detecting similarities and differences between Manzamenones and antimalarials (Quinine and Artemisinin). These calculations showed that all these structures absorb in the UV-visible range with absorption maxima wavelengths between 200 nm and 350 nm. The possible red shift, bue shift, hyperchromic and hypochromic effects of the probes (water and alanine) were examined on the spectra.

Published in Science Journal of Chemistry (Volume 10, Issue 4)
DOI 10.11648/j.sjc.20221004.12
Page(s) 103-115
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Malaria, Manzamenone, Absorption Spectra, TD-DFT, Reactivity, Level of Theory

References
[1] Olumese P. (2005) Epidemiology and surveillance: changing the global picture of malaria. Myth or reality? Acta trop., 95, 265.
[2] Kanga Sita N’Zoue a, Simeon Yobo-Bi Manan a, Yves Cedrick Kee Mankoh a, Massire Toure a, Mathieu Kouame N’Goran a, Serge Didier Konan b, Patrick Dioppoh Sery b, Hubert Yao Kouame b, Mamadou Kamagate a, (2021).«Antimalaria therapy of chronic renal failure», ScienceDirect.
[3] Sachs, J. and P. Malaney, (2002). The economic and social burden of malaria. Nature,. 415 (6872): p. 680-5.
[4] ASSANI ADJAGBÉ. (2017). Thèse de doctorat:«LA LUTTE CONTRE LE PALUDISME EN CÔTE D’IVOIRE: DIRECTIVES INTERNATIONALES ET PRATIQUES MÉDICALES (1948-1996)», université PARIS 1 PANTHÉON-SORBONNE.
[5] Reddy, P. L.; Khan, S. I.; Ponnan, P.; Tripathi, M.; Rawat, D. S (2017). Synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem., 126, 675-686.
[6] Jones, R. A.; Panda, S. S.; Hall, C. D. (2015,) Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem. 97, 335–355.
[7] Murugan, K.; Raichurkar, A. V.; Rahman, F.; Khan, N.; Iyer, P. S. (2015,) Synthesis and in vitro evaluation of novel 8-aminoquinoline—Pyrazolopyrimidine hybrids as potent antimalarial agents. Bioorg. Med. Chem. Lett. 25, 1100–1103.
[8] White, N. J.; Pukrittayakamee, S.; Hien, T. T.; Faiz, M. A.; Mokuolu, O. A.; Dondorp, A. M. (2014). Malaria. Lancet, 383, 723–735.
[9] White N. J., Nosten F., Looareesuwan S., Olliaro P. Averting (1999). a malaria disaster. Lancet, 353, 1965.
[10] Demar M.. (2004). Plasmodium falciparum in vivo resistance to quinine: description of tow RIII responses in French Guinea. Am. J. Trop. Med. Hyg., 70, 125.
[11] S. Turschner, T. Efferth. (2009). Drug resistance in plasmodium: natural products in the fight against malaria, Mini-Rev. Med chem., 2, 206.
[12] Matthew D. Norris and Michael V. Perkins. (2016). Structural diversity and chemical synthesis of peroxide and peroxide-derived polyketide metabolites from marine sponges Natural Product Reports REVIEW.
[13] Takeuehi S., Kikuehi., Tsukamoto S., Ishibashi M., Kobayashi J. (1995) three New oxylipins related to 3, 6 dioxo-4-docosenoic acid from Okinawan marine sponges, Plakortis sp. Tetrahedron, 51, 21, 5979-5986.
[14] Tanaka N., Asai M., Takahashi-Nakaguchi A., Gonoi T., Formont J., Kobayashi J. (2013) Manzamenone O, new trimeric fatty acid derivative from a marine sponge Plakortis sp. Organic letters, 15, 10, 2518-2521.
[15] Atse Adepo Jacques, Kone Soleymane, Diomande Sékou, Bamba El-Hadji Sawaliho, (2022). «Comparison of Molecular Properties (Stabilities, Reactivity and Interaction) of Manzamenones and Two Antimalarial Drugs (Quinine and Artemisinin) Using Mixed Method Calculations (ONIOM) and DFT (B3LYP)», Computational Chemistry, 10, 1-18.
[16] Atse, A. J., Diomande, S., Kone, S., & Bamba, E. S. (2022). «Lipophilicity and Interactions Properties of a Group of Thirteen Manzamenones in Comparison with Artemisinin and Quinine Using Quantum Chemical Methods: ONIOM and DFT (B3LYP)», European Journal of Applied Sciences, 10 (3). 258-274.
[17] R. J. Maldanis, J. S. Wood, A. Chandrasekaran, M. D. Rauusch, J. C. W. Chien, (2002). The formation and polymerization behavior of Ni(II)-diimine complexes using various aluminum activators, Journal of Organometallic Chemistry, 645 158-167.
[18] Morokuma, K. (2002). New challenges in quantum chemistry: quests for accurate calculations forlarge molecular systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360, 1149-1164.
[19] Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K., and Frisch, M. J. (1999). A new ONIOM implementation in Gaussian 98. Part I. The calculation of energies, gradients, vibrationalfrequencies and electric field derivatives, Journal of Molecular Structure: THEOCHEM, 461, 1-21.
[20] Vreven, T., and Morokuma, K. (2000). On the application of the IMOMO (integrated molecularorbital+ molecular orbital) method. Journal of Computational Chemistry, 21, 1419-1432.
[21] Zheng, F., and Zhan, C.-G. (2008). Rational design of an enzyme mutant for anti-cocainetherapeutics. Journal of Computer-Aider Molecular Design, 22, 661-671.
[22] Ruangpornvisuti, V. (2004). Recognition of carboxylate and dicarboxylates by azophenol ̶ thiourea derivatives: a theoretical host ̶ guest investigation. Journal of Molecular Structure: THEOCHEM, 686, 47-55.
[23] Samanta, P. N., and Das, K. K. (2016). Prediction of binding modes and affinities of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide inhibitors to the carbonic anhydrasereceptorby docking and ONIOM calculations. Journal of Molecular Graphics and Modelling, 63, 38-48.
[24] Gunnarsson, O.; Lundqvist B. I. (1976) Phys. Rev. B, 13, 4274. (b) Gunnarsson, O.; Lundqvist, B. I. (1976) Phys. Rev. B, 15, 6006 (erratum).
[25] Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. (1998). J. Chem. Phys., 108, 4439.
[26] Tozer, D. J.; Amos R. D.; Handy, N. C.; Roos, B. O. (1999). Serrano-Andres, L. Mol. Phys., 97, 859.
[27] Gross, E. K. U.; Dobson, J. F.; Petersillka, M. (1996). In Density Functional Theory, Ed. Nalewajski, R. F., Springer: Heidelberg,.
[28] Reáteguia, E., Aksan, A. (2010). «Effects of water on the structure and low/high temperature stability of confined proteins,» Phys. Chem. Phys, vol. 12 (135), pp. 10161 – 10172.
[29] Casida, M. E. (1995). in Recent advances in density functional methods, Ed. Chong, D. P., World Scienti c: Singapore, 155. (b) Hirata, S.; Head-Gordon, M. (1999). Chem. 246 Etude théorique de gros systèmes: analyse de liaisons et modélisations Phys. Lett., 314, 291. (c) Parac, M.; Grimme, S. J. Chem. Phys. A 2002, 101, 6844.
[30] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[31] Hohenberg, P.; Kohn, W. (1964). Inhomogeneous electron gas,. Phys. Rev. 136, B 864.
[32] Koch, W.; Holthausen, (1999). M. C. A in Chemist’s Guide to Density Fonctional Theory 2nd Ed, Wiley-VCH,. Weinheim.
[33] P. Geerlings, F. De Proft, W. Langenaeker,. (2003). Conceptual Density Functional Theory, Chem. Rev., 103, 1793-1874.
[34] H. Chermette. (1999). Chemical reactivity indexes in density functional theory, J. Comput. Chem., 20, 129-154.
[35] R. G. Pearson. (2002). Hard and Soft acids and bases, J. Am. Chem. Soc., 85; 3533-3539.
[36] C. A. Caro, J. H. Zagal, F. Bedioui, C. Adamo, G. I. Cardenas-Jiron. (2004). Solvent effect on density functional reactivity indexes applied to substituted nickel phthalocyanines, J. Phys. Chem. A; 108, 6045-6051.
[37] G. I. Cardenas-Jiron, S. Gutierrez-Oliva, J. Melin, A. Toro-Labbe. (1997). Relations between potential energy, electronic potential and hardness profiles, J. Phys. Chem. A, 101, 4621-4627.
[38] R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke. (1978) Electronegativity: The density functional viewpoint, J. Chem. Phys., 68, 3801-3807.
[39] R. S. Mulliken. (1934). A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities, J. Chem. Phys., 2, 782-793.
[40] R. G. Pearson. (1963). Hard and soft acids and bases, J. Am. Chem. Soc., 85, 3533-3539.
[41] T. Koopmans. (1934). Uber die zuordnung von wellenfunk-tionen und eigenwerten zu den einzelnen elektronen eines atoms,. Physica, 1, 104-113.
[42] Fukui K., Yonesawa, Shingu H., (1952). A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys. 20, 1952, 722.
[43] R. G. Parr, L. V. Szentpaly, S. Liu. (1999). Electrophilicity index, J. Am. Chem. Soc., 121, 1922-1924.
[44] M. L. L. Kou, L. Diao, Q. Zhang, Z. Li, Wu, W. Lu, D. Pan et Z. Wei, «Theoretical study of WS-9-Based organic sensitizers for unusual vis/NIR absorption and highly efficient dye-sensitized solar cells» J. Phys. Chem.,, vol. 119, p. 9782 ̶ 9790, 2015.
[45] Rahul Raju, C. Yohannan Panicker, Prakash S. Nayak, B. Narayana, B. K. Sarojini, C. Van Alsenoy, Abdulaziz A. Al-Saadi. (2015). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134, 63–72.
[46] S. Xavier, S. Periandy, S. Ramalingam. (2015). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137, 306–320.
[47] Xavier S., Periady S. and Ramalingam S. (2015). NBO, conformational, NLO, HOMO ̶ LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 137 306 ̶ 20.
[48] V. Luk€es, A. Aquino et H. Lischka, (2005). J. Phys. Chem. A, vol. 109, pp. 10232-10238.
[49] LAËTITIA DANGLETERRE. (2007) «Apport des spectroscopies moléculaires à l’étude des mécanismes de fixation des ion métalliques polluants par les substances humiques. Complexation de Al (III), Pb (II) et Zn (II) par des systèmes modèles,» Université des Sciences et Technologie de LILLE.
[50] M. Hachi, S. El Khattabi, A. Fitri, A. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi et M. Bouachrine, (2018). J. Mater. Environ. Sci., vol. 9, n° %14, pp. 1200-121.
Cite This Article
  • APA Style

    Atse Adepo Jacques, Diomande Sekou, Kone Soleymane, Bamba El-Hadji Sawaliho. (2022). Stability and Absorption of Fourteen Manzamenones, Artemisinin and Quinine Isolated and Complexed with H2O, Alanine by ONIOM, DFT and TD-DFT Methods. Science Journal of Chemistry, 10(4), 103-115. https://doi.org/10.11648/j.sjc.20221004.12

    Copy | Download

    ACS Style

    Atse Adepo Jacques; Diomande Sekou; Kone Soleymane; Bamba El-Hadji Sawaliho. Stability and Absorption of Fourteen Manzamenones, Artemisinin and Quinine Isolated and Complexed with H2O, Alanine by ONIOM, DFT and TD-DFT Methods. Sci. J. Chem. 2022, 10(4), 103-115. doi: 10.11648/j.sjc.20221004.12

    Copy | Download

    AMA Style

    Atse Adepo Jacques, Diomande Sekou, Kone Soleymane, Bamba El-Hadji Sawaliho. Stability and Absorption of Fourteen Manzamenones, Artemisinin and Quinine Isolated and Complexed with H2O, Alanine by ONIOM, DFT and TD-DFT Methods. Sci J Chem. 2022;10(4):103-115. doi: 10.11648/j.sjc.20221004.12

    Copy | Download

  • @article{10.11648/j.sjc.20221004.12,
      author = {Atse Adepo Jacques and Diomande Sekou and Kone Soleymane and Bamba El-Hadji Sawaliho},
      title = {Stability and Absorption of Fourteen Manzamenones, Artemisinin and Quinine Isolated and Complexed with H2O, Alanine by ONIOM, DFT and TD-DFT Methods},
      journal = {Science Journal of Chemistry},
      volume = {10},
      number = {4},
      pages = {103-115},
      doi = {10.11648/j.sjc.20221004.12},
      url = {https://doi.org/10.11648/j.sjc.20221004.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20221004.12},
      abstract = {This work is carried out on fourteen Manzamenones and two antimalarials (Quinine and Artemisinin). It was undertaken to compare their reactivity parameters on one hand and on the other hand, the absorption properties in the UV range for the isolated molecules and two types of complexes studied. Manzamenones are an atypical class of fatty acids. They are isolated from a marine sponge of the genus Plakortis kenyensis and used in the treatment of malaria. The study is based on quantum chemical calculations. First, we calculated and compared the reactivity parameters of the complexes to those of the isolated molecules. The levels of theory used to calculate the complexes of Manzamenones are ONIOM (B3LYP/6-31++G(d,p); AM1) and ONIOM (B3LYP/6-31+G(d,p); AM1). Those used to calculate the complexes of Quinine and Artemisinin are B3LYP/6-31++G(d,p) and B3LYP/6-31+G(d,p). Secondly, for each molecule and its two studied complexes, we have realized the UV absorption spectra. The time dependent density functional theory (TD-DFT) method was used for these calculations. These different comparisons allowed detecting similarities and differences between Manzamenones and antimalarials (Quinine and Artemisinin). These calculations showed that all these structures absorb in the UV-visible range with absorption maxima wavelengths between 200 nm and 350 nm. The possible red shift, bue shift, hyperchromic and hypochromic effects of the probes (water and alanine) were examined on the spectra.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Stability and Absorption of Fourteen Manzamenones, Artemisinin and Quinine Isolated and Complexed with H2O, Alanine by ONIOM, DFT and TD-DFT Methods
    AU  - Atse Adepo Jacques
    AU  - Diomande Sekou
    AU  - Kone Soleymane
    AU  - Bamba El-Hadji Sawaliho
    Y1  - 2022/07/12
    PY  - 2022
    N1  - https://doi.org/10.11648/j.sjc.20221004.12
    DO  - 10.11648/j.sjc.20221004.12
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 103
    EP  - 115
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20221004.12
    AB  - This work is carried out on fourteen Manzamenones and two antimalarials (Quinine and Artemisinin). It was undertaken to compare their reactivity parameters on one hand and on the other hand, the absorption properties in the UV range for the isolated molecules and two types of complexes studied. Manzamenones are an atypical class of fatty acids. They are isolated from a marine sponge of the genus Plakortis kenyensis and used in the treatment of malaria. The study is based on quantum chemical calculations. First, we calculated and compared the reactivity parameters of the complexes to those of the isolated molecules. The levels of theory used to calculate the complexes of Manzamenones are ONIOM (B3LYP/6-31++G(d,p); AM1) and ONIOM (B3LYP/6-31+G(d,p); AM1). Those used to calculate the complexes of Quinine and Artemisinin are B3LYP/6-31++G(d,p) and B3LYP/6-31+G(d,p). Secondly, for each molecule and its two studied complexes, we have realized the UV absorption spectra. The time dependent density functional theory (TD-DFT) method was used for these calculations. These different comparisons allowed detecting similarities and differences between Manzamenones and antimalarials (Quinine and Artemisinin). These calculations showed that all these structures absorb in the UV-visible range with absorption maxima wavelengths between 200 nm and 350 nm. The possible red shift, bue shift, hyperchromic and hypochromic effects of the probes (water and alanine) were examined on the spectra.
    VL  - 10
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Constitution and Reaction of Matter of the Unity of Formation and Research Science of Structure Matter and Technology, University Felix Houphouet Boigny, Abidjan, Ivory Cost

  • Unity of Formation and Research Agriculture Halieutic Resources and Agro-industry, University of San Pedro, San Pedro, Ivory Cost

  • Laboratory of Constitution and Reaction of Matter of the Unity of Formation and Research Science of Structure Matter and Technology, University Felix Houphouet Boigny, Abidjan, Ivory Cost

  • Laboratory of Constitution and Reaction of Matter of the Unity of Formation and Research Science of Structure Matter and Technology, University Felix Houphouet Boigny, Abidjan, Ivory Cost

  • Sections