Abstract: Heavy quarkonia,meson, and -meson masses are calculated within the framework of the N-dimensional radial Schrödinger equation. The Cornell potential is extended by including the harmonic oscillator potential. The energy eigenvalues and the corresponding wave functions are calculated in the N-dimensional space using the Nikiforov-Uvarov (NV) method. The energy eigenvalues are obtained in the three-dimensional space. The mass of spectra of charmonium, bottomonium, , and mesons are calculated. The effect of dimensionality number on the mass of quarkonium is investigated. A comparison with other theoretical approaches is discussed. The obtained results are in good agreement with experimental data. We conclude that the dimensionality number plays an important role in studying the spectra of quarkonium masses. The modified Cornell potential provides a good description of the spectra of quarkonium masses.Abstract: Heavy quarkonia,meson, and -meson masses are calculated within the framework of the N-dimensional radial Schrödinger equation. The Cornell potential is extended by including the harmonic oscillator potential. The energy eigenvalues and the corresponding wave functions are calculated in the N-dimensional space using the Nikiforov-U...
Show More