The binding of cefonicid sodium (CFS) with trypsin was investigated by spectroscopic and molecular docking methods under different temperatures conditions (303, 310 and 318 K). The results demonstrated that the interaction between CFS and trypsin was taking place via static quenching with 1:1 binding ratio. The fluorescence datas were treated by using the double logarithmic equation, and the binding constants Ka of the interaction of CFS-trypsin systems and the number of binding sites n were obtained. The thermodynamic parameters of CFS-trypsin systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them were mainly hydrophobic interaction and hydrogen bonding interaction, and with the molecular docking results are consistent.
Published in | American Journal of Optics and Photonics (Volume 5, Issue 6) |
DOI | 10.11648/j.ajop.20170506.14 |
Page(s) | 80-87 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Cefonicid Sodium, Trypsin, Spectrometry, Interaction, Molecular Docking
[1] | X. N. Yan, B. S. Liu, B. H. Chong, S. N. Cao, J. Lumin. 2013, 142,162. |
[2] | L. Gombos, J. Kardos, A. Patthy, P. Medveczky, L. Szilagyi, A. Malnasi-Csizmadia, L. Graf, Biochem. 2008, 47, 1684. |
[3] | S. Ghosh, Colloid. Surface. B 2008, 66, 186. |
[4] | R. M. Stroud, L. M. Kay, R. E. Dickerson, J. Mol. Biol. 1974, 83, 192. |
[5] | H. Li, J. Pu, Y. Wang, C. Liu, J. Yu, T. Li, R. Q. Wang, Spectrochim. Acta A 2013, 115, 11. |
[6] | Y. Q. Wang, C. Y. Tan, S. L. Zhuang, P. Z. Zhai, Y. Cui, Q. H. Zhou, H. M. Zhang, Z. H. Fei, J. Hazard. Mater. 2014, 278, 65. |
[7] | X. X. Hu, Z. H. Yu, R. T. Liu, Spectrochim. Acta A 2013, 108, 54. |
[8] | X. R. Li, P. H. Li, Lumin. 2016, 31, 792. |
[9] | M. Nidhin, D. Ghosh, H. Yadav, N. Yadav, S. Majumder, Materi. Sci. Engin. B 2015, 202, 53. |
[10] | W. He, H. Dou, L. Zhang, L. Wang, R. Wang, J. Chang, Spectrochim. Acta Part A 2014,118, 519. |
[11] | G. Elmas, Y. Esra, J. Fluoresc. 2014, 24, 1445. |
[12] | J. Q. Liu, J. N. Tian, Y. Li, X. J. Yao, Z. D. Hu, X. G. Chen, Macromol. Biosci. 2005, 4, 520. |
[13] | S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker, A. Karim, J. F. Douglas, Acs Nano 2009, 4, 379. |
[14] | C. N. Pace, F. Vajdos, L. Fee, Fee, G. Grimsley, T. Gray, Prot. Sci. 1995, 11, 2423. |
[15] | Z. X. Chi, R. T. Liu, H. Zhang, Biomacromolecules 2010, 9, 2459. |
[16] | R. Yang, L. L. Yu, H. J. Zeng, R. L. Liang, X. L. Chen, L. B. Qu, J. Fluoresc. 2012, 22, 1459. |
[17] | Y. Teng, F. Ji, C. Li, Z. Yu, R. Liu, J. Lumin. 2011, 131, 2667. |
[18] | G. Kaur, S. Tripathi, Spectrochim. Acta. Part A 2015, 134, 183. |
[19] | Y. Q. Wang, H. M. Zhang, G. C. Zhang, S. X. Liu, Q. H. Zhou, Z. H. Fei, Int. J. Biol. Macromol. 2007, 41, 250. |
[20] | Y. Hu, S. Xu, X. Zhu, A. Gong, Spectrochim. Acta A. 2009, 74, 531. |
[21] | R. Ghosh, M. Mukherjee, K. Chattopadhyay, S. Ghosh, J. Phys. Chem. B 2012, 116, 12500. |
[22] | M. Maciazek-Jurczyk, A. Sulkowska, B. Bojko, J. Rownicka, W. W. Sulkowska, J. Mol. Struct. 2009, 924-926, 384. |
[23] | Y. J. Hu, Y. Liu, Z. B. Pi, S. S. Qu, Bioorg. Med. Chem. 2005, 13, 6609. |
[24] | Y. Y. Hu, S. Q. Xu, X. S. Zhu, A. Q. Gong, Spectrochim. Acta Part A 2009, 74, 531. |
[25] | K. Gurvir, S. K. Tripathi, Spectrochim. Acta Part A 2015, 134, 183. |
[26] | Y. Y. Yue, X. G. Chen, J. Qin, X. J. Yao, Dyes Pigm. 2008, 79, 182. |
[27] | P. D. Ross, S. Subramanian, Biochem. 1981, 20, 3096. |
[28] | W. R. Wang, R. R. Zhu, R. Xiao, H. Liu, S. L. Wang, Biol. Trace. Elem. Res., 2011, 142, 446. |
[29] | Y. Lu, G. K. Wang, X. M. Lu, J. Lv, M. H. Xu, W. W. Zhang, Spectrochim. Acta Part A 2010, 75, 266. |
[30] | B. Bojko, A. Sulkowska, M. Maciazek-Jurczyk, J. Rownicka, W. W. Sukowski, J. Pharm. Biomed. Anal. 2010, 52, 384. |
[31] | S. N. Khan, B. Islam, R. Yennamalli, A. Sultan, N. Subbarao, A. U. Khan, Eur. J. Pharm. Sci. 2008, 35, 382. |
[32] | W. He, H. J. Dou, L. J. Wang, R. Y. Wang, J. B. Chang, Spectrochim. Acta A 2014, 118, 519. |
[33] | J. Jin, X. Zhang, J. Lumin. 2008, 128, 86. |
[34] | R. Zhang, T. Sun, C. G. Liu, W. Song, Z. Z. Cao, R. T. Liu, Biochem. Mol. Toxicol. 2015, 29, 425. |
[35] | Y. Jia, H. Q. Yang, L. Q. Guo, Q. Wang, Q. Y. M. Huang, H. Li, Chemi. Resea. Applic. 2016, 28, 680. |
APA Style
Jinju Wang, Baosheng Liu, Shaotong Duan, Tongtong Li. (2018). Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods. American Journal of Optics and Photonics, 5(6), 80-87. https://doi.org/10.11648/j.ajop.20170506.14
ACS Style
Jinju Wang; Baosheng Liu; Shaotong Duan; Tongtong Li. Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods. Am. J. Opt. Photonics 2018, 5(6), 80-87. doi: 10.11648/j.ajop.20170506.14
AMA Style
Jinju Wang, Baosheng Liu, Shaotong Duan, Tongtong Li. Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods. Am J Opt Photonics. 2018;5(6):80-87. doi: 10.11648/j.ajop.20170506.14
@article{10.11648/j.ajop.20170506.14, author = {Jinju Wang and Baosheng Liu and Shaotong Duan and Tongtong Li}, title = {Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods}, journal = {American Journal of Optics and Photonics}, volume = {5}, number = {6}, pages = {80-87}, doi = {10.11648/j.ajop.20170506.14}, url = {https://doi.org/10.11648/j.ajop.20170506.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20170506.14}, abstract = {The binding of cefonicid sodium (CFS) with trypsin was investigated by spectroscopic and molecular docking methods under different temperatures conditions (303, 310 and 318 K). The results demonstrated that the interaction between CFS and trypsin was taking place via static quenching with 1:1 binding ratio. The fluorescence datas were treated by using the double logarithmic equation, and the binding constants Ka of the interaction of CFS-trypsin systems and the number of binding sites n were obtained. The thermodynamic parameters of CFS-trypsin systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them were mainly hydrophobic interaction and hydrogen bonding interaction, and with the molecular docking results are consistent.}, year = {2018} }
TY - JOUR T1 - Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods AU - Jinju Wang AU - Baosheng Liu AU - Shaotong Duan AU - Tongtong Li Y1 - 2018/01/12 PY - 2018 N1 - https://doi.org/10.11648/j.ajop.20170506.14 DO - 10.11648/j.ajop.20170506.14 T2 - American Journal of Optics and Photonics JF - American Journal of Optics and Photonics JO - American Journal of Optics and Photonics SP - 80 EP - 87 PB - Science Publishing Group SN - 2330-8494 UR - https://doi.org/10.11648/j.ajop.20170506.14 AB - The binding of cefonicid sodium (CFS) with trypsin was investigated by spectroscopic and molecular docking methods under different temperatures conditions (303, 310 and 318 K). The results demonstrated that the interaction between CFS and trypsin was taking place via static quenching with 1:1 binding ratio. The fluorescence datas were treated by using the double logarithmic equation, and the binding constants Ka of the interaction of CFS-trypsin systems and the number of binding sites n were obtained. The thermodynamic parameters of CFS-trypsin systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them were mainly hydrophobic interaction and hydrogen bonding interaction, and with the molecular docking results are consistent. VL - 5 IS - 6 ER -