Abstract: A new model of Cascaded Black – Linear Distribution (CBLD) in circular aperture is suggested. Four different models of CBLD are studied. In the 1st model, ten strips are considered where half of them are black and the other half has linear distribution, starting with black strip from the center of the circular aperture. In the 2nd model, twenty strips are considered of equal black and linear zones. In the 3rd model, a ratio of 2:1 is given for the twenty strips of the CBLD. In the 4th model, annular aperture of linear distribution is considered. We have computed the Point Spread Function (PSF) corresponding to all arrangements and compared with the corresponding PSF for different apertures of circular, annular, and black and white (B/W) transparent circular apertures. The cut-off spatial frequency which is the indication of resolution is investigated in all the described apertures. The Coherent Transfer Function (CTF) using the CBLD apertures is computed. Application of the CBLD arrangement corresponding to the objective and collector lenses in the CLSM using microscopic input images is shown. The reconstructed images using the described models in the CLSM are investigated. A Mat-Lab code is used for the computation of all images.Abstract: A new model of Cascaded Black – Linear Distribution (CBLD) in circular aperture is suggested. Four different models of CBLD are studied. In the 1st model, ten strips are considered where half of them are black and the other half has linear distribution, starting with black strip from the center of the circular aperture. In the 2nd model, twenty str...Show More
Abstract: A manipulation of four circles arranged along the Cartesian coordinates in uniform circular aperture is compared with selected four blood cells forming the object using the technique of speckle photography. The aperture model is considered have two- fold symmetry. A diffuser is placed in the same plane of the object or the model of four circles in order to get the modulated speckle pattern which is the Fourier spectrum of object information convoluted with the Fourier spectrum of the random diffuser. The modulated speckle pattern is smeared by the Point Spread Function computed from the diffraction corresponding to the whole circular aperture. The reconstruction process gave nearly similar speckle images little degraded by the noise originated from the diffuser. The Point Spread Function corresponding to the model of four circles is computed analytically and also using the FFT technique. A comparison is made with the Fourier spectrum of the blood cells and its corresponding autocorrelation function giving nearly similar results. We can acquire the erythrocytes blood cells in the imaging plane by operating the FFT upon the modulated speckle images. The reconstructed images of blood cells are affected by the noise originated from the diffuser. A Mat- Lab code is made in the construction of the aperture and all the images computed in the processing.Abstract: A manipulation of four circles arranged along the Cartesian coordinates in uniform circular aperture is compared with selected four blood cells forming the object using the technique of speckle photography. The aperture model is considered have two- fold symmetry. A diffuser is placed in the same plane of the object or the model of four circles in ...Show More