Saccharification of Ulva Lactuca Via Pseudoalteromonas Piscicida for Biofuel Production
El-Naggar M. M.,
Abdul-Raouf U. M.,
Ibrahim H. A. H.,
El-Sayed W. M. M.
Issue:
Volume 3, Issue 6, December 2014
Pages:
77-84
Received:
22 September 2014
Accepted:
10 October 2014
Published:
24 November 2014
DOI:
10.11648/j.jenr.20140306.11
Downloads:
Views:
Abstract: Pseudoalteromonas piscicida WM21 was isolated from seawater at Hurghada, Red Sea, Egypt. It was promising to hydrolyze the polysaccharides of Ulva lactuca. Ulva lactuca contained 44% carbohydrates, 5% lipids, 16% proteins, 12% Fibers and 23% ash. Optimization of reducing sugars production by P. piscicida WM21 was investigated using Plackett- Burmman design. The main effect data as well as the t-test results suggested that the beef extract and inoculum size are the most effective variables that controlled the reducing sugar produced by P. piscicida. Considerable positive effects of the high levels of substrate concentration and low levels of incubation period were also suggested. On the other hand, variations within the examined levels of pH levels, NaCl and peptone recorded slight effects. While the main effect data as well as the t-test results suggested that the substrate concentration and incubation period were the most effective variables that controlled amylase activity produced by P. piscicida. To evaluate the accuracy of the applied Plackett-Burman statistical design, a verification experiment was carried out. The predicted near optimum and far from optimum levels of the independent variables were examined and compared to the basal condition settings. The applied near optimum condition, resulted in approximately 56 mg/g increase in reducing sugar with 6 mm amylase activity by P. piscicida when compared to the basal medium formulation, while the conditions predicted to be far from optimal recorded approximately 45 mg/g decreases in reducing sugar with 3 mm amylase activity. These results supported the predictions of the applied Plackett-Burman experiment for enhancement of reducing sugar production by marine microorganisms.
Abstract: Pseudoalteromonas piscicida WM21 was isolated from seawater at Hurghada, Red Sea, Egypt. It was promising to hydrolyze the polysaccharides of Ulva lactuca. Ulva lactuca contained 44% carbohydrates, 5% lipids, 16% proteins, 12% Fibers and 23% ash. Optimization of reducing sugars production by P. piscicida WM21 was investigated using Plackett- Burmma...
Show More
Correlation among Vitrinite Reflectance Ro%, Pyrolysis Parameters, and Atomic H/C Ratio: Implications for Evaluating Petroleum Potential of Coal and Carbonaceous Materials
Hsien-Tsung Lee,
Li-Chung Sun
Issue:
Volume 3, Issue 6, December 2014
Pages:
85-100
Received:
21 November 2014
Accepted:
7 December 2014
Published:
18 December 2014
DOI:
10.11648/j.jenr.20140306.12
Downloads:
Views:
Abstract: In this study, 26 samples from northwest Taiwan, 12 from Mainland China, 13 from Australia and 39 from literature were jointly examined to explore relationships among pyrolysis parameters, Vitrinite Reflectance Ro%, and Atomic H/C ratio. Samples of mixed high and low maturity coal were combined in proportions determined by the total quantity in the furnace prior to the Rock-Eval analysis and used to explore the correlation between the pyrolysis parameter, Tmax, and the vitrinite reflectance. These average values were then plotted against the corresponding Tmax results. The experimental results revealed that:(1) For low maturity coal samples that were mixed with different proportions of high maturity coal samples, the Tmax values fell within a range of low maturities. Alternativly, for samples containing the reworked sedimentary materials in the rock formation, the Tmax values were similar to the maturity of young material. (2) For sampling or Rock-Eval analysis of the high maturity materials, contamination with low maturity material should be avoided, even in very small amounts. (3) Afterproportional mixing, there was no evidence of a general linear relationship between the average of vitrinite reflectance, Ro%, and the corresponding Tmax value recorded. The atomic H/C ratio, as well as the BI, HI, QI, S1, and S2, generally decreases while the maturity (Tmax (oC); vitrinite reflectance Ro%) increases. The atomic H/C ratio decreases slightly from 1.1 to 0.7 while maturity increased from Ro 0.55% to 0.85%. Samples with atomic H/C ratio within this range show significant change in certain other geochemical parameters (eg. BI, HI, QI, PI, S1, S2, S1+S2, Tmax). Organic matter in the samples studied is of type II/III kerogen based on the relationship between HI and Tmax. The hydrocarbon potential per unit organic carbon (S1+S2/TOC) of the organic matter in this study to be approximately 100~380, similar to the potential of humic coal used in general gas and oil production. This shows that organic matter in an oil window of Ro%=0.55 and atomic H/C=1.1 have reached a certain maturity and hydrocarbon potential. Overall, when the atomic H/C ratio increases, the BI, HI, QI, S1, and S2 also show an increasing trend; therefore, these parameters and atomic H/C ratio show a certain correlation.
Abstract: In this study, 26 samples from northwest Taiwan, 12 from Mainland China, 13 from Australia and 39 from literature were jointly examined to explore relationships among pyrolysis parameters, Vitrinite Reflectance Ro%, and Atomic H/C ratio. Samples of mixed high and low maturity coal were combined in proportions determined by the total quantity in the...
Show More