Resonance Parameters, Autoionisation of 2S+1Lo Doubly Excited N5+ Ion States Associated with n=3 and 4, N6+ Threshold
Oumar Tidiane Ba,
Cheikh Amadou Bamba Dath,
Alassane Traore,
Ababacar Sadikhe Ndao
Issue:
Volume 5, Issue 3, September 2020
Pages:
27-35
Received:
8 August 2020
Accepted:
26 August 2020
Published:
3 September 2020
Abstract: The motivation of the diagonalization method is to take into consideration the coupling between closed and opened channels in term of perturbation theory and to neglect the indirect coupling as well but also the autoionisation states through the opened channels. This procedure leads to a relatively simple mathematical problem consisting of solving a system of linear algebraic equations instead of a system of coupled differential equations or integro-differential equations. Diagonalization method under LS coupling scheme for the states 1,3Po; 1,3Do; 1,3Fo; 1,3Go; 1,3Ho was performed. The partial widths for multi-channel autoionizing levels to sublevels of N6+ were carried out by neglecting the direct coupling between opened channels. The calculations of total and partial widths of the (nln'l') 1,3Lo (L=1, 2, 3, 4 and 5) multiple-decay-channel system N5+ were performed. From L=1 to 2, the (4l4l') 1,3Lo states located under n=3 and the (3lnl') 1,3Lo states follow the same rules. All the (4l4l') 1,3Go and (4l4l') 1,3Ho states located under n=3 observe the rule 1.
Abstract: The motivation of the diagonalization method is to take into consideration the coupling between closed and opened channels in term of perturbation theory and to neglect the indirect coupling as well but also the autoionisation states through the opened channels. This procedure leads to a relatively simple mathematical problem consisting of solving ...
Show More
Evaluating Precise Quantity of Decommissioning Waste by Cutting Virtual 3D Models of Large Equipment
Hiroshi Seki,
Mitsutaka Imamura,
Hiroshi Nagase
Issue:
Volume 5, Issue 3, September 2020
Pages:
36-43
Received:
1 October 2020
Accepted:
22 October 2020
Published:
30 October 2020
Abstract: Equipment and piping components contaminated by radioactive materials and/or containing low-level irradiated waste must be cut, segmented, and packed into waste containers. Workers need to avoid overexposure to radiation in dismantling environments, and the number of waste containers for the pieces of equipment and piping components needs to be minimized. Thus, we developed an automatic planning method for virtually cutting 3D equipment with limitations on container size, radioactivity, weight, and dose rate. Cutting sequence data was used to formulate different cutting-work procedures, generate cut objects, and calculate the exposure during disassembling work. By calculating the required cutting length and dose-rate distribution in working environments for various cutting sequences of large equipment, the developed system is expected to aid in the planning of decommissioning. To utilize systems engineering in conjunction with elemental technologies, the following problems need to be solved; both weight and volume of the waste need to be controlled so that radioactive waste for decommissioning nuclear power plants is traceable. Identifying segmented equipment from a 3D model is key to calculating the number of volumetric segmented fragments and required number of containers. To evaluate exposure and amount of waste, we developed an automatic planning method for virtually cutting 3D equipment objects given constraints. Cutting sequence data was used to formulate different cutting workflows, generate cut objects, and calculate the exposure dose from disassembling work.
Abstract: Equipment and piping components contaminated by radioactive materials and/or containing low-level irradiated waste must be cut, segmented, and packed into waste containers. Workers need to avoid overexposure to radiation in dismantling environments, and the number of waste containers for the pieces of equipment and piping components needs to be min...
Show More