Michael, Dowker, Worrell, Banerjee Theorems Extended to Multifunctions
Terrence Anthony Edwards,
James Edwards Joseph,
Bhamini M. P. Nayar
Issue:
Volume 9, Issue 2, April 2021
Pages:
38-43
Received:
2 February 2021
Accepted:
23 February 2021
Published:
30 March 2021
Abstract: E. Michael, in 1957, proved that the pracompactness is preserved by continuous closed functions from a space onto another. Michael’s proof is an immediate consequence of his characterization of paracompact spaces as those spaces with the property that each open cover of the space has a closure preserving refinement. Normality and transfinite induction were used to produce this characterization. J. M. Worrell, in 1985, proved, using the well-ordering principle, that continuous closed images of metacompact spaces are metacompact, as a consequence of a characterization of metacompact spaces he established earlier the same year. C. H. Dowker and R. N. Banerjee have provided the corresponding results for countable paracompactnes and countable metacompactness. In this article we extend these results for continuous, image closed and onto multifunctions. A result due to Joseph and Kwack that all open sets in Y have the form g(V) - g(X - V); where V is open in X, if g : X → Y is continuous, closed and onto (2006), is extended to image-closed, continuous, multifunctions. Such multifunctions as well as a characterization that a space is paracompact (metacompact) if and only if every ultrafilter of type P (M) converges, proved, in 1918, by Joseph and Nayar, is used to give generalizations of the invariance of paracompactness and metacompactness under continuous closed surjections to multifunctions.
Abstract: E. Michael, in 1957, proved that the pracompactness is preserved by continuous closed functions from a space onto another. Michael’s proof is an immediate consequence of his characterization of paracompact spaces as those spaces with the property that each open cover of the space has a closure preserving refinement. Normality and transfinite induct...
Show More
The Fermionic-bosonic Representations of A(M-1,N-1)-graded Lie Superalgebras
Issue:
Volume 9, Issue 2, April 2021
Pages:
44-51
Received:
17 March 2021
Accepted:
31 March 2021
Published:
10 April 2021
Abstract: Lie groups, Lie algebras and their representation theories are important parts of mathematical physics. They play a crucial character in symmetries. As a generalization of Lie algebra, Lie superalgebras are from the comprehending and description for supersymmetry of mathematical physics. Unlike the semisimple Lie algebras, understanding the representation theory of Lie superalgebras is a difficult problem. Lie superalgebras graded by root supersystems are Lie superalgebras of great significance. In recent years, the representations of types B(m,n), C(n), D(m,n), P(n) and Q(n)-graded Lie superalgebras coordinatized by quantum tori have been studied. In this paper, we construct fermionic-bosonic representations for a class of A(M-1,N-1)-graded Lie superalgebras coordinatized by quantum tori with nontrivial central extensions. At first, we introduce the background of the research on the graded Lie superalgebras and present some basics on it. Then, a set of bases for A(M-1,N-1)-graded Lie superalgebras and the multiplication operations among them are given specifically to present the construction of the vector space. By using the tensor product of fermionic and bosonic module, the operators and their operation relations are derived. Finally, we obtain a brief and pretty representation theorem of A(M-1,N-1)-graded Lie superalgebras with nontrivial central extensions.
Abstract: Lie groups, Lie algebras and their representation theories are important parts of mathematical physics. They play a crucial character in symmetries. As a generalization of Lie algebra, Lie superalgebras are from the comprehending and description for supersymmetry of mathematical physics. Unlike the semisimple Lie algebras, understanding the represe...
Show More
On Approximate Controllability of Second Order Fractional Impulsive Stochastic Differential System with Nonlocal, State-dependent Delay and Poisson Jumps
Issue:
Volume 9, Issue 2, April 2021
Pages:
52-63
Received:
4 February 2021
Accepted:
27 March 2021
Published:
26 April 2021
Abstract: The main scope of this paper is to focus the approximate controllability of second order (q∈(1,2]) fractional impulsive stochastic differential system with nonlocal, state-dependent delay and Poisson umps in Hilbert spaces. The existence of mild solutions is derived by using Schauder fixed point theorem. Sufficient conditions for the approximate controllability are established by under the assumptions that the corresponding linear system is approximately controllable and it is checked by using Lebesgue dominated convergence theorem. The main results are completly based on the results that the existence and approximate controllability of the fractional stochastic system of order 1Ca(t)}t≥0, new set of novel sufficient conditions and methods adopted directly from deterministic fractional equations for the second order nonlinear impulsive fractional nonlocal stochastic differential systems with state-dependent delay and Poisson jumps in Hildert space H. Finally an example is added to illustrate the main results.
Abstract: The main scope of this paper is to focus the approximate controllability of second order (q∈(1,2]) fractional impulsive stochastic differential system with nonlocal, state-dependent delay and Poisson umps in Hilbert spaces. The existence of mild solutions is derived by using Schauder fixed point theorem. Sufficient conditions for the approximate co...
Show More