Abstract: In this paper we solve a complex discrete-continuous model of tumour-induced angiogenesis using an explicit time-stepping FDM and simultaneously simulate the model dynamics in 3D. The interoperability between the CUDA programming model and the graphics hardware through OpenGL allows us to generate dynamic interactive 3D realistic visualisations. We use CUDA for the complex parallel calculations and deploy OpenGL for on-the-fly 3D visualisation of the numerical simulations. Clearly, being able to link the numerical results of complex mathematical models to interactive 3D visualisations that can literally update instantaneously to varying model parameters, should provide an invaluable tool for clinical physicians and research scientists. We also give an overview of current medical imaging techniques for studying microcirculatory and blood flow dynamics at the cellular level and indicate how the results presented here could offer potential for future developments in this area.Abstract: In this paper we solve a complex discrete-continuous model of tumour-induced angiogenesis using an explicit time-stepping FDM and simultaneously simulate the model dynamics in 3D. The interoperability between the CUDA programming model and the graphics hardware through OpenGL allows us to generate dynamic interactive 3D realistic visualisations. We...Show More