Determination of Isotopic Abundance of 2H, 13C, 18O, and 37Cl in Biofield Energy Treated Dichlorophenol Isomers
Mahendra Kumar Trivedi,
Alice Branton,
Dahryn Trivedi,
Gopal Nayak,
Gunin Saikia,
Snehasis Jana
Issue:
Volume 4, Issue 1, January 2016
Pages:
1-6
Received:
30 October 2015
Accepted:
6 November 2015
Published:
21 December 2015
Abstract: 2,4-Dichlorophenol (2,4-DCP) and 2,6-dichlorophenol (2,6-DCP) are two isomers of dichlorophenols, have been used as preservative agents for wood, paints, vegetable fibers and as intermediates in the production of pharmaceuticals and dyes. The aim of the study was to evaluate the impact of biofield energy treatment on the isotopic abundance ratios of 2H/1H or 13C/12C, and 18O/16O or 37Cl/35Cl, in dichlorophenol isomers using gas chromatography-mass spectrometry (GC-MS). The 2,4-DCP and 2,6-DCP samples were divided into two parts: control and treated. The control sample remained as untreated, while the treated sample was further divided into four groups as T1, T2, T3, and T4. The treated group was subjected to Mr. Trivedi’s biofield energy treatment. The GC-MS spectra of 2,4-DCP and 2,6-DCP showed three to six m/z peaks at 162, 126, 98, 73, 63, 37 etc. due to the molecular ion peak and fragmented peaks. The isotopic abundance ratios (percentage) in both the isomers were increased significantly after biofield treatment as compared to the control. The isotopic abundance ratio of (PM+1)/PM and (PM+2)/PM after biofield energy treatment were increased by 54.38% and 40.57% in 2,4-DCP and 126.11% and 18.65% in 2,6-DCP, respectively which may affect the bond energy, reactivity and finally stability to the product.
Abstract: 2,4-Dichlorophenol (2,4-DCP) and 2,6-dichlorophenol (2,6-DCP) are two isomers of dichlorophenols, have been used as preservative agents for wood, paints, vegetable fibers and as intermediates in the production of pharmaceuticals and dyes. The aim of the study was to evaluate the impact of biofield energy treatment on the isotopic abundance ratios o...
Show More
Removal of Lead, Cadmium and Cobalt from Oil Spill Water onto Soursop (Annonamuricata) Peel
M. M. Ndamitso,
S. Mustapha,
M. B. Etsuyankpa,
J. O. Jacob,
I. O. Adeshina,
L. Ekor
Issue:
Volume 4, Issue 1, January 2016
Pages:
7-11
Received:
24 November 2015
Accepted:
4 December 2015
Published:
25 February 2016
Abstract: This study was carried out to evaluate the efficiency of metals (Pb, Cd and Co) removal from oil spill water using the soursop (Annonamuricata) peels as adsorbent. Batch adsorption experiment was conducted as a function of pH, contact time, adsorbent dosage and particle size. Optimum pH of removal obtained for Pb, Cd and Co ions were 6, 6 and 4 respectively. The kinetic data obtained in this study fitted well to pseudo-second order model. This study showed that soursop peels is a potential biosorbent for the removal of Pb, Cd and Co ions from oil spill water, thus providing a cheap way of safeguarding human health, aquatic lives and soil fertility.
Abstract: This study was carried out to evaluate the efficiency of metals (Pb, Cd and Co) removal from oil spill water using the soursop (Annonamuricata) peels as adsorbent. Batch adsorption experiment was conducted as a function of pH, contact time, adsorbent dosage and particle size. Optimum pH of removal obtained for Pb, Cd and Co ions were 6, 6 and 4 res...
Show More